The Weddell Sea supplies 40–50% of the Antarctic BottomWaters that fill the global ocean abyss, and therefore exerts significant influence over global circulation and climate. Previous studies have identified a range of different processes that may contribute to dense shelf water (DSW) formation and export on the southern Weddell Sea continental shelf. However, the relative importance of these processes has not been quantified, which hampers prioritization of observational deployments and development of model parameterizations in this region. In this study a high-resolution (1/12°) regional model of the southern Weddell Sea is used to quantify the overturning circulation and decompose it into contributions due to multi-annual mean flows, seasonal/interannual variability, tides, and other sub-monthly variability. It is shown that tides primarily influence the overturning by changing the melt rate of the Filchner-Ronne Ice Shelf (FRIS). The resulting ~0.2 Sv decrease in DSW transport is comparable to the magnitude of the overturning in the FRIS cavity, but small compared to DSW export across the continental shelf break. Seasonal/interannual fluctuations exert a modest influence on the overturning circulation due to the relatively short (8-year) analysis period. Analysis of the transient energy budget indicates that the non-tidal, sub-monthly variability is primarily baroclinically-generated eddies associated with dense overflows. These eddies play a comparable role to the mean flow in exporting dense shelf waters across the continental shelf break, and account for 100% of the transfer of heat onto the continental shelf. The eddy component of the overturning is sensitive to model resolution, decreasing by a factor of ~2 as the horizontal grid spacing is refined from 1/3° to 1/12°.
more »
« less
Controls of Topographic Rossby Wave Properties and Downslope Transport in Dense Overflows
Abstract Antarctic Bottom Water is primarily formed via overflows of dense shelf water (DSW) around the Antarctic continental margins. The dynamics of these overflows therefore influence the global abyssal stratification and circulation. Previous studies indicate that dense overflows can be unstable, energizing topographic Rossby waves (TRW) over the continental slope. However, it remains unclear how the wavelength and frequency of the TRWs are related to the properties of the overflowing DSW and other environmental conditions, and how the TRW properties influence the downslope transport of DSW. This study uses idealized high-resolution numerical simulations to investigate the dynamics of overflow-forced TRWs and the associated downslope transport of DSW. It is shown that the propagation of TRWs is constrained by the geostrophic along-slope flow speed of the DSW and by the dynamics of linear plane waves, allowing the wavelength and frequency of the waves to be predicted a priori. The rate of downslope DSW transport depends nonmonotonically on the slope steepness: steep slopes approximately suppress TRW formation, resulting in steady, frictionally dominated DSW descent. For slopes of intermediate steepness, the overflow becomes unstable and generates TRWs, accompanied by interfacial form stresses that drive DSW downslope relatively rapidly. For gentle slopes, the TRWs lead to the formation of coherent eddies that inhibit downslope DSW transport. These findings may explain the variable properties of TRWs observed in oceanic overflows, and they imply that the rate at which DSW descends to the abyssal ocean depends sensitively on the manifestation of TRWs and/or nonlinear eddies over the continental slope.
more »
« less
- PAR ID:
- 10450547
- Publisher / Repository:
- Journal of Physical Oceanography
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 53
- Issue:
- 7
- ISSN:
- 0022-3670
- Page Range / eLocation ID:
- 1805 to 1820
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Antarctic bottom water (AABW) forms through the descent of dense shelf waters (DSW) into the abyssal ocean, with tides playing a key role in DSW transport and entrainment. Previous studies suggest that tides can suppress the net overflow entrainment, favoring the formation of denser AABW. However, how tidal effects on AABW formation and associated material sequestration vary with a changing climate remains unclear. In this study, an idealized numerical model is used to investigate potential climatic influences on tidally influenced AABW properties. Experiments are conducted with varying ambient stratifications and rates of DSW supply, inspired by projected future changes over the Antarctic continental shelf. The results show that tidal advection and associated V‐shaped front can modify the vertical diffusivity and the exchanges between DSW and its ambient waters, thereby altering the properties of AABW. For a future warm and salty shelf, AABW will become warmer and saltier accordingly, with the effects of the V‐shaped front weakening significantly. Conversely, for a future cold and fresh shelf, AABW formation is nearly nonexistent due to the stronger dilution of DSW, and the tidal effects become much weaker. Additionally, tidal suppression of overflow mixing is only significant for large DSW fluxes (thickness) and becomes negligible for small DSW fluxes. These findings suggest that the contribution of tides to DSW descent will weaken under global warming, thereby accelerating the slowdown of AABW formation.more » « less
-
Abstract The Antarctic Slope Current (ASC) is a coherent circulation feature that rings the Antarctic continental shelf and regulates the flow of water toward the Antarctic coastline. The structure and variability of the ASC influences key processes near the Antarctic coastline that have global implications, such as the melting of Antarctic ice shelves and water mass formation that determines the strength of the global overturning circulation. Recent theoretical, modeling, and observational advances have revealed new dynamical properties of the ASC, making it timely to review. Earlier reviews of the ASC focused largely on local classifications of water properties of the ASC's primary front. Here we instead provide a classification of the current's frontal structure based on the dynamical mechanisms that govern both the along‐slope and cross‐slope circulation; these two modes of circulation are strongly coupled, similar to the Antarctic Circumpolar Current. Highly variable motions, such as dense overflows, tides, and eddies are shown to be critical components of cross‐slope and cross‐shelf exchange, but understanding of how the distribution and intensity of these processes will evolve in a changing climate remains poor due to observational and modeling limitations. Results linking the ASC to larger modes of climate variability, such as El Niño, show that the ASC is an integral part of global climate. An improved dynamical understanding of the ASC is still needed to accurately model and predict future Antarctic sea ice extent, the stability of the Antarctic ice sheets, and the Southern Ocean's contribution to the global carbon cycle.more » « less
-
null (Ed.)Continental slopes – steep regions between the shelf break and abyssal ocean – play key roles in the climatology and ecology of the Arctic Ocean. Here, through review and synthesis, we find that the narrow slope regions contribute to ecosystem functioning disproportionately to the size of the habitat area (∼6% of total Arctic Ocean area). Driven by inflows of sub-Arctic waters and steered by topography, boundary currents transport boreal properties and particle loads from the Atlantic and Pacific Oceans along-slope, thus creating both along and cross-slope connectivity gradients in water mass properties and biomass. Drainage of dense, saline shelf water and material within these, and contributions of river and meltwater also shape the characteristics of the slope domain. These and other properties led us to distinguish upper and lower slope domains; the upper slope (shelf break to ∼800 m) is characterized by stronger currents, warmer sub-surface temperatures, and higher biomass across several trophic levels (especially near inflow areas). In contrast, the lower slope has slower-moving currents, is cooler, and exhibits lower vertical carbon flux and biomass. Distinct zonation of zooplankton, benthic and fish communities result from these differences. Slopes display varying levels of system connectivity: (1) along-slope through property and material transport in boundary currents, (2) cross-slope through upwelling of warm and nutrient rich water and down-welling of dense water and organic rich matter, and (3) vertically through shear and mixing. Slope dynamics also generate separating functions through (1) along-slope and across-slope fronts concentrating biological activity, and (2) vertical gradients in the water column and at the seafloor that maintain distinct physical structure and community turnover. At the upper slope, climatic change is manifested in sea-ice retreat, increased heat and mass transport by sub-Arctic inflows, surface warming, and altered vertical stratification, while the lower slope has yet to display evidence of change. Model projections suggest that ongoing physical changes will enhance primary production at the upper slope, with suspected enhancing effects for consumers. We recommend Pan-Arctic monitoring efforts of slopes given that many signals of climate change appear there first and are then transmitted along the slope domain.more » « less
-
Abstract Dynamically unstable katabatic Prandtl slope flows are studied via numerical simulations and spectral analysis. Results confirm the presence of aperiodic temporal and spatial oscillations in the flow fields due to the emergence and propagation of flow instabilities. Dampeden masseoscillations are observed to dominate the initial oscillatory stage of laminar katabatic slope flows. Stationary longitudinal rolls, which are dominant at shallow slopes, are observed to meander with increasing stratification perturbation parameter and the average distance between the rolls exhibits a strong dependence on slope inclination for slope angles less than . At much steeper slopes, traveling slope waves emerge and they are transported at the mean jet velocity. Both types of instability rolls coexist for certain combinations of dimensionless parameters, forming intricate structures that break into smaller eddies as the flow becomes more dynamically unstable. In the dynamically unstable nonturbulent regime,en masseoscillations are insignificant, but their normalised frequency can be used to discern the type of flow instability.more » « less
An official website of the United States government

