skip to main content


Title: Learning to infer structures of network games
Strategic interactions between a group of individuals or organisations can be modelled as games played on networks, where a player’s payoff depends not only on their actions but also on those of their neighbours. Inferring the network structure from observed game outcomes (equilibrium actions) is an important problem with numerous potential applications in economics and social sciences. Existing methods mostly require the knowledge of the utility function associated with the game, which is often unrealistic to obtain in real-world scenarios. We adopt a transformer-like architecture which correctly accounts for the symmetries of the problem and learns a mapping from the equilibrium actions to the network structure of the game without explicit knowledge of the utility function. We test our method on three different types of network games using both synthetic and real-world data, and demonstrate its effectiveness in network structure inference and superior performance over existing methods.  more » « less
Award ID(s):
2153468
NSF-PAR ID:
10451832
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In network games, individuals interact strategically within network environments to maximize their utilities. However, obtaining network structures is challenging. In this work, we propose an unsupervised learning model, called data-dependent gated-prior graph variational autoencoder (GPGVAE), that infers the underlying latent interaction type (strategic complement vs. substitute) among individuals and the latent network structure based on their observed actions. Specially, we propose a spectral graph neural network (GNN) based encoder to predict the interaction type and a data-dependent gated prior that models network structures conditioned on the interaction type. We further propose a Transformer based mixture of Bernoulli encoder of network structures and a GNN based decoder of game actions. We systematically study the Monte Carlo gradient estimation methods and effectively train our model in a stage-wise fashion. Extensive experiments across various synthetic and real-world network games demonstrate that our model achieves state-of-the-art performances in inferring network structures and well captures interaction types. 
    more » « less
  2. Public goods games study the incentives of individuals to contribute to a public good and their behaviors in equilibria. In this paper, we examine a specific type of public goods game where players are networked and each has binary actions, and focus on the algorithmic aspects of such games. First, we show that checking the existence of a pure-strategy Nash equilibrium is NP-Complete. We then identify tractable instances based on restrictions of either utility functions or of the underlying graphical structure. In certain cases, we also show that we can efficiently compute a socially optimal Nash equilibrium. Finally, we propose a heuristic approach for computing approximate equilibria in general binary networked public goods games, and experimentally demonstrate its effectiveness. 
    more » « less
  3. null (Ed.)
    We study the following problem, which to our knowledge has been addressed only partially in the literature and not in full generality. An agent observes two players play a zero-sum game that is known to the players but not the agent. The agent observes the actions and state transitions of their game play, but not rewards. The players may play either op-timally (according to some Nash equilibrium) or according to any other solution concept, such as a quantal response equilibrium. Following these observations, the agent must recommend a policy for one player, say Player 1. The goal is to recommend a policy that is minimally exploitable un-der the true, but unknown, game. We take a Bayesian ap-proach. We establish a likelihood function based on obser-vations and the specified solution concept. We then propose an approach based on Markov chain Monte Carlo (MCMC), which allows us to approximately sample games from the agent’s posterior belief distribution. Once we have a batch of independent samples from the posterior, we use linear pro-gramming and backward induction to compute a policy for Player 1 that minimizes the sum of exploitabilities over these games. This approximates the policy that minimizes the ex-pected exploitability under the full distribution. Our approach is also capable of handling counterfactuals, where known modifications are applied to the unknown game. We show that our Bayesian MCMC-based technique outperforms two other techniques—one based on the equilibrium policy of the maximum-probability game and the other based on imitation of observed behavior—on all the tested stochastic game envi-ronments. 
    more » « less
  4. null (Ed.)
    We propose a deep neural network-based algorithm to identify the Markovian Nash equilibrium of general large 𝑁-player stochastic differential games. Following the idea of fictitious play, we recast the 𝑁-player game into 𝑁 decoupled decision problems (one for each player) and solve them iteratively. The individual decision problem is characterized by a semilinear Hamilton-Jacobi-Bellman equation, to solve which we employ the recently developed deep BSDE method. The resulted algorithm can solve large 𝑁-player games for which conventional numerical methods would suffer from the curse of dimensionality. Multiple numerical examples involving identical or heterogeneous agents, with risk-neutral or risk-sensitive objectives, are tested to validate the accuracy of the proposed algorithm in large group games. Even for a fifty-player game with the presence of common noise, the proposed algorithm still finds the approximate Nash equilibrium accurately, which, to our best knowledge, is difficult to achieve by other numerical algorithms. 
    more » « less
  5. Edwards, Peter (Ed.)
    Game theory is used by all behavioral sciences, but its development has long centered around the economic interpretation of equilibrium outcomes in relatively simple games and toy systems. But game theory has another potential use: the high-level design of large game compositions that express complex architectures and represent real-world institutions faithfully. Compositional game theory, grounded in the mathematics underlying programming languages, and introduced here as a general computational framework, increases the parsimony of game representations with abstraction and modularity, accelerates search and design, and helps theorists across disciplines express real-world institutional complexity in well-defined ways. Relative to existing approaches in game theory, compositional game theory is especially promising for solving game systems with long-range dependencies, for comparing large numbers of structurally related games, and for nesting games into the larger logical or strategic flows typical of real world policy or institutional systems. 
    more » « less