The skip list is an elegant dictionary data structure that is com- monly deployed in RAM. A skip list with N elements supports searches, inserts, and deletes in O(logN) operations with high probability (w.h.p.) and range queries returning K elements in O(log N + K) operations w.h.p. A seemingly natural way to generalize the skip list to external memory with block size B is to “promote” with probability 1/B, rather than 1/2. However, there are practical and theoretical obsta- cles to getting the skip list to retain its efficient performance, space bounds, and high-probability guarantees. We give an external-memory skip list that achieves write- optimized bounds. That is, for 0 < ε < 1, range queries take O(logBε N + K/B) I/Os w.h.p. and insertions and deletions take O((logBε N)/B1−ε) amortized I/Os w.h.p. Our write-optimized skip list inherits the virtue of simplicity from RAM skip lists. Moreover, it matches or beats the asymptotic bounds of prior write-optimized data structures such as Bε trees or LSM trees. These data structures are deployed in high-performance databases and file systems.
more »
« less
What Does Dynamic Optimality Mean in External Memory?
A data structure A is said to be dynamically optimal over a class of data structures C if A is constant- competitive with every data structure C ∈ C. Much of the research on binary search trees in the past forty years has focused on studying dynamic optimality over the class of binary search trees that are modified via rotations (and indeed, the question of whether splay trees are dynamically optimal has gained notoriety as the so-called dynamic-optimality conjecture). Recently, researchers have extended this to consider dynamic optimality over certain classes of external-memory search trees. In particular, Demaine, Iacono, Koumoutsos, and Langerman propose a class of external-memory trees that support a notion of tree rotations, and then give an elegant data structure, called the Belga B-tree, that is within an O(log log N )-factor of being dynamically optimal over this class. In this paper, we revisit the question of how dynamic optimality should be defined in external memory. A defining characteristic of external-memory data structures is that there is a stark asymmetry between queries and inserts/updates/deletes: by making the former slightly asymptotically slower, one can make the latter significantly asymptotically faster (even allowing for operations with sub-constant amortized I/Os). This asymmetry makes it so that rotation-based search trees are not optimal (or even close to optimal) in insert/update/delete-heavy external-memory workloads. To study dynamic optimality for such workloads, one must consider a different class of data structures. The natural class of data structures to consider are what we call buffered-propagation trees. Such trees can adapt dynamically to the locality properties of an input sequence in order to optimize the interactions between different inserts/updates/deletes and queries. We also present a new form of beyond-worst-case analysis that allows for us to formally study a continuum between static and dynamic optimality. Finally, we give a novel data structure, called the Jεllo Tree, that is statically optimal and that achieves dynamic optimality for a large natural class of inputs defined by our beyond-worst-case analysis.
more »
« less
- Award ID(s):
- 2106999
- PAR ID:
- 10328614
- Date Published:
- Journal Name:
- Innovations in theoretical computer science
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hash tables are a ubiquitous class of dictionary data structures. However, standard hash table implementations do not translate well into the external memory model, because they do not incorporate locality for insertions. Iacono and Pătraşu established an update/query tradeoff curve for external-hash tables: a hash table that performs insertions in O(λ/B) amortized IOs requires Ω(logλ N) expected IOs for queries, where N is the number of items that can be stored in the data structure, B is the size of a memory transfer, M is the size of memory, and λ is a tuning parameter. They provide a complicated hashing data structure, which we call the IP hash table, that meets this curve for λ that is Ω(loglogM +logM N). In this paper, we present a simpler external-memory hash table, the Bundle of Arrays Hash Table (BOA), that is optimal for a narrower range of λ. The simplicity of BOAs allows them to be readily modified to achieve the following results: A new external-memory data structure, the Bundle of Trees Hash Table (BOT), that matches the performance of the IP hash table, while retaining some of the simplicity of the BOAs. The Cache-Oblivious Bundle of Trees Hash Table (COBOT), the first cache-oblivious hash table. This data structure matches the optimality of BOTs and IP hash tables over the same range of λ.more » « less
-
Buffer-and-flush is a technique for transforming standard external-memory search trees into write-optimized search trees. In exchange for faster amortized insertions, buffer-and-flush can sometimes significantly increase the latency of operations by causing cascades of flushes. In this paper, we show that flushing cascades are not a fundamental consequence of the buffer-flushing technique, and can be removed entirely using randomization techniques. The underlying implementation of buffer flushing relies on a buffer-eviction strategy at each node in the tree. The ability for the user to select the buffer eviction strategy based on the workload has been shown to be important for performance, both in theory and in practice. In order to support arbitrary buffer-eviction strategies, we introduce the notion of a universal flush, which uses a universal eviction policy that can simulate any other eviction policy. This abstracts away the underlying eviction strategy, even allowing for workload-specific strategies that change dynamically. Our deamortization preserves the amortized throughput of the underlying flushing strategy on all workloads. In particular, with our deamortization and a node cache of size poly-logarithmic in the number of insertions performed on the tree, the amortized insertion cost matches the lower bound of Brodal and Fagerberg. For typical parameters, the lower bound is less than 1 I/O per insertion. For such parameters, our worst-case insertion cost is O(1) I/Os.more » « less
-
A data structure is history independent if its internal representation reveals nothing about the history of operations beyond what can be determined from the current contents of the data structure. History independence is typically viewed as a security or privacy guarantee, with the intent being to minimize risks incurred by a security breach or audit. Despite widespread advances in history independence, there is an important data-structural primitive that previous work has been unable to replace with an equivalent history-independent alternative---dynamic partitioning. In dynamic partitioning, we are given a dynamic set S of ordered elements and a size-parameter B, and the objective is to maintain a partition of S into ordered groups, each of size Θ(B). Dynamic partitioning is important throughout computer science, with applications to B-tree rebalancing, write-optimized dictionaries, log-structured merge trees, other external-memory indexes, geometric and spatial data structures, cache-oblivious data structures, and order-maintenance data structures. The lack of a history-independent dynamic-partitioning primitive has meant that designers of history-independent data structures have had to resort to complex alternatives. In this paper, we achieve history-independent dynamic partitioning. Our algorithm runs asymptotically optimally against an oblivious adversary, processing each insert/delete with O(1) operations in expectation and O(B log N/loglog N) with high probability in set size N.more » « less
-
null (Ed.)Using sampling to estimate the connectivity of high-dimensional configuration spaces has been the theoretical underpinning for effective sampling-based motion planners. Typical strategies either build a roadmap, or a tree as the underlying search structure that connects sampled configurations, with a focus on guaranteeing completeness and optimality as the number of samples tends to infinity. Roadmap-based planners allow preprocessing the space, and can solve multiple kinematic motion planning problems, but need a steering function to connect pairwise-states. Such steering functions are difficult to define for kinodynamic systems, and limit the applicability of roadmaps to motion planning problems with dynamical systems. Recent advances in the analysis of single query tree-based planners has shown that forward search trees based on random propagations are asymptotically optimal. The current work leverages these recent results and proposes a multi-query framework for kinodynamic planning. Bundles of kinodynamic edges can be sampled to cover the state space before the query arrives. Then, given a motion planning query, the connectivity of the state space reachable from the start can be recovered from a forward search tree reasoning about a local neighborhood of the edge bundle from each tree node. The work demonstrates theoretically that considering any constant radial neighborhood during this process is sufficient to guarantee asymptotic optimality. Experimental validation in five and twelve dimensional simulated systems also highlights the ability of the proposed edge bundles to express high-quality kinodynamic solutions. Our approach consistently finds higher quality solutions compared to SST, and RRT, often with faster initial solution times. The strategy of sampling kinodynamic edges is demonstrated to be a promising new paradigm.more » « less
An official website of the United States government

