skip to main content


Title: Ultra-fine Entity Typing with Indirect Supervision from Natural Language Inference
Abstract The task of ultra-fine entity typing (UFET) seeks to predict diverse and free-form words or phrases that describe the appropriate types of entities mentioned in sentences. A key challenge for this task lies in the large number of types and the scarcity of annotated data per type. Existing systems formulate the task as a multi-way classification problem and train directly or distantly supervised classifiers. This causes two issues: (i) the classifiers do not capture the type semantics because types are often converted into indices; (ii) systems developed in this way are limited to predicting within a pre-defined type set, and often fall short of generalizing to types that are rarely seen or unseen in training. This work presents LITE🍻, a new approach that formulates entity typing as a natural language inference (NLI) problem, making use of (i) the indirect supervision from NLI to infer type information meaningfully represented as textual hypotheses and alleviate the data scarcity issue, as well as (ii) a learning-to-rank objective to avoid the pre-defining of a type set. Experiments show that, with limited training data, LITE obtains state-of-the-art performance on the UFET task. In addition, LITE demonstrates its strong generalizability by not only yielding best results on other fine-grained entity typing benchmarks, more importantly, a pre-trained LITE system works well on new data containing unseen types.1  more » « less
Award ID(s):
2105329
NSF-PAR ID:
10328931
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Transactions of the Association for Computational Linguistics
Volume:
10
ISSN:
2307-387X
Page Range / eLocation ID:
607 to 622
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Automatic short answer grading is an important research direction in the exploration of how to use artificial intelligence (AI)-based tools to improve education. Current state-of-theart approaches use neural language models to create vectorized representations of students responses, followed by classifiers to predict the score. However, these approaches have several key limitations, including i) they use pre-trained language models that are not well-adapted to educational subject domains and/or student-generated text and ii) they almost always train one model per question, ignoring the linkage across question and result in a significant model storage problem due to the size of advanced language models. In this paper, we study the problem of automatic short answer grading for students’ responses to math questions and propose a novel framework for this task. First, we use MathBERT, a variant of the popular language model BERT adapted to mathematical content, as our base model and fine-tune it on the downstream task of student response grading. Second, we use an in-context learning approach that provides scoring examples as input to the language model to provide additional context information and promote generalization to previously unseen questions. We evaluate our framework on a real-world dataset of student responses to open-ended math questions and show that our framework (often significantly) outperform existing approaches, especially for new questions that are not seen during training. 
    more » « less
  2. Mitrovic, A ; Bosch, N (Ed.)
    Automatic short answer grading is an important research direction in the exploration of how to use artificial intelligence (AI)-based tools to improve education. Current state-of-theart approaches use neural language models to create vectorized representations of students responses, followed by classifiers to predict the score. However, these approaches have several key limitations, including i) they use pre-trained language models that are not well-adapted to educational subject domains and/or student-generated text and ii) they almost always train one model per question, ignoring the linkage across question and result in a significant model storage problem due to the size of advanced language models. In this paper, we study the problem of automatic short answer grading for students’ responses to math questions and propose a novel framework for this task. First, we use MathBERT, a variant of the popular language model BERT adapted to mathematical content, as our base model and fine-tune it on the downstream task of student response grading. Second, we use an in-context learning approach that provides scoring examples as input to the language model to provide additional context information and promote generalization to previously unseen questions. We evaluate our framework on a real-world dataset of student responses to open-ended math questions and show that our framework (often significantly) outperform existing approaches, especially for new questions that are not seen during training. 
    more » « less
  3. Automatic short answer grading is an important research direction in the exploration of how to use artificial intelligence (AI)-based tools to improve education. Current state-of-theart approaches use neural language models to create vectorized representations of students responses, followed by classifiers to predict the score. However, these approaches have several key limitations, including i) they use pre-trained language models that are not well-adapted to educational subject domains and/or student-generated text and ii) they almost always train one model per question, ignoring the linkage across question and result in a significant model storage problem due to the size of advanced language models. In this paper, we study the problem of automatic short answer grading for students’ responses to math questions and propose a novel framework for this task. First, we use MathBERT, a variant of the popular language model BERT adapted to mathematical content, as our base model and fine-tune it on the downstream task of student response grading. Second, we use an in-context learning approach that provides scoring examples as input to the language model to provide additional context information and promote generalization to previously unseen questions. We evaluate our framework on a real-world dataset of student responses to open-ended math questions and show that our framework (often significantly) outperform existing approaches, especially for new questions that are not seen during training. 
    more » « less
  4. Automatic short answer grading is an important research direction in the exploration of how to use artificial intelligence (AI)-based tools to improve education. Current state-of-theart approaches use neural language models to create vectorized representations of students responses, followed by classifiers to predict the score. However, these approaches have several key limitations, including i) they use pre-trained language models that are not well-adapted to educational subject domains and/or student-generated text and ii) they almost always train one model per question, ignoring the linkage across question and result in a significant model storage problem due to the size of advanced language models. In this paper, we study the problem of automatic short answer grading for students’ responses to math questions and propose a novel framework for this task. First, we use MathBERT, a variant of the popular language model BERT adapted to mathematical content, as our base model and fine-tune it on the downstream task of student response grading. Second, we use an in-context learning approach that provides scoring examples as input to the language model to provide additional context information and promote generalization to previously unseen questions. We evaluate our framework on a real-world dataset of student responses to open-ended math questions and show that our framework (often significantly) outperform existing approaches, especially for new questions that are not seen during training. 
    more » « less
  5. Automatic short answer grading is an important research direction in the exploration of how to use artificial intelligence (AI)-based tools to improve education. Current state-of-theart approaches use neural language models to create vectorized representations of students responses, followed by classifiers to predict the score. However, these approaches have several key limitations, including i) they use pre-trained language models that are not well-adapted to educational subject domains and/or student-generated text and ii) they almost always train one model per question, ignoring the linkage across question and result in a significant model storage problem due to the size of advanced language models. In this paper, we study the problem of automatic short answer grading for students’ responses to math questions and propose a novel framework for this task. First, we use MathBERT, a variant of the popular language model BERT adapted to mathematical content, as our base model and fine-tune it on the downstream task of student response grading. Second, we use an in-context learning approach that provides scoring examples as input to the language model to provide additional context information and promote generalization to previously unseen questions. We evaluate our framework on a real-world dataset of student responses to open-ended math questions and show that our framework (often significantly) outperform existing approaches, especially for new questions that are not seen during training. 
    more » « less