skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: C 1 actions on manifolds by lattices in Lie groups
In this paper we study Zimmer's conjecture for $C^{1}$ actions of lattice subgroup of a higher-rank simple Lie group with finite center on compact manifolds. We show that when the rank of an uniform lattice is larger than the dimension of the manifold, then the action factors through a finite group. For lattices in ${\rm SL}(n, {{\mathbb {R}}})$ , the dimensional bound is sharp.  more » « less
Award ID(s):
2020013
NSF-PAR ID:
10328960
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Compositio Mathematica
Volume:
158
Issue:
3
ISSN:
0010-437X
Page Range / eLocation ID:
529 to 549
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study and classify proper q -colourings of the ℤ d lattice, identifying three regimes where different combinatorial behaviour holds. (1) When $q\le d+1$ , there exist frozen colourings, that is, proper q -colourings of ℤ d which cannot be modified on any finite subset. (2) We prove a strong list-colouring property which implies that, when $q\ge d+2$ , any proper q -colouring of the boundary of a box of side length $n \ge d+2$ can be extended to a proper q -colouring of the entire box. (3) When $q\geq 2d+1$ , the latter holds for any $n \ge 1$ . Consequently, we classify the space of proper q -colourings of the ℤ d lattice by their mixing properties. 
    more » « less
  2. Abstract We investigate maximal tori in the Hochschild cohomology Lie algebra ${\operatorname {HH}}^1(A)$ of a finite dimensional algebra $A$, and their connection with the fundamental groups associated to presentations of $A$. We prove that every maximal torus in ${\operatorname {HH}}^1(A)$ arises as the dual of some fundamental group of $A$, extending the work by Farkas, Green, and Marcos; de la Peña and Saorín; and Le Meur. Combining this with known invariance results for Hochschild cohomology, we deduce that (in rough terms) the largest rank of a fundamental group of $A$ is a derived invariant quantity, and among self-injective algebras, an invariant under stable equivalences of Morita type. Using this we prove that there are only finitely many monomial algebras in any derived equivalence class of finite dimensional algebras; hitherto this was known only for very restricted classes of monomial algebras. 
    more » « less
  3. Abstract

    A barcode is a finite multiset of intervals on the real line. Jaramillo-Rodriguez (2023) previously defined a map from the space of barcodes with a fixed number of bars to a set of multipermutations, which presented new combinatorial invariants on the space of barcodes. A partial order can be defined on these multipermutations, resulting in a class of posets known as combinatorial barcode lattices. In this paper, we provide a number of equivalent definitions for the combinatorial barcode lattice, show that its Möbius function is a restriction of the Möbius function of the symmetric group under the weak Bruhat order, and show its ground set is the Jordan-Hölder set of a labeled poset. Furthermore, we obtain formulas for the number of join-irreducible elements, the rank-generating function, and the number of maximal chains of combinatorial barcode lattices. Lastly, we make connections between intervals in the combinatorial barcode lattice and certain classes of matchings.

     
    more » « less
  4. Abstract

    Robust principal component analysis (RPCA) is a widely used method for recovering low‐rank structure from data matrices corrupted by significant and sparse outliers. These corruptions may arise from occlusions, malicious tampering, or other causes for anomalies, and the joint identification of such corruptions with low‐rank background is critical for process monitoring and diagnosis. However, existing RPCA methods and their extensions largely do not account for the underlying probabilistic distribution for the data matrices, which in many applications are known and can be highly non‐Gaussian. We thus propose a new method called RPCA for exponential family distributions (), which can perform the desired decomposition into low‐rank and sparse matrices when such a distribution falls within the exponential family. We present a novel alternating direction method of multiplier optimization algorithm for efficient decomposition, under either its natural or canonical parametrization. The effectiveness of is then demonstrated in two applications: the first for steel sheet defect detection and the second for crime activity monitoring in the Atlanta metropolitan area.

     
    more » « less
  5. Abstract For a mixing shift of finite type, the associated automorphism group has a rich algebraic structure, and yet we have few criteria to distinguish when two such groups are isomorphic. We introduce a stabilization of the automorphism group, study its algebraic properties, and use them to distinguish many of the stabilized automorphism groups. We also show that for a full shift, the subgroup of the stabilized automorphism group generated by elements of finite order is simple and that the stabilized automorphism group is an extension of a free abelian group of finite rank by this simple group. 
    more » « less