Abstract We develop a theory of Bridgeland stability conditions and moduli spaces of semistable objects for a family of varieties. Our approach is based on and generalizes previous work by Abramovich–Polishchuk, Kuznetsov, Lieblich, and Piyaratne–Toda. Our notion includes openness of stability, semistable reduction, a support property uniformly across the family, and boundedness of semistable objects. We show that such a structure exists whenever stability conditions are known to exist on the fibers. Our main application is the generalization of Mukai’s theory for moduli spaces of semistable sheaves on K3 surfaces to moduli spaces of Bridgeland semistable objects in the Kuznetsov component associated to a cubic fourfold. This leads to the extension of theorems by Addington–Thomas and Huybrechts on the derived category of special cubic fourfolds, to a new proof of the integral Hodge conjecture, and to the construction of an infinite series of unirational locally complete families of polarized hyperkähler manifolds of K3 type. Other applications include the deformation-invariance of Donaldson–Thomas invariants counting Bridgeland stable objects on Calabi–Yau threefolds, and a method for constructing stability conditions on threefolds via degeneration.
more »
« less
The integral Hodge conjecture for two-dimensional Calabi–Yau categories
We formulate a version of the integral Hodge conjecture for categories, prove the conjecture for two-dimensional Calabi–Yau categories which are suitably deformation equivalent to the derived category of a K3 or abelian surface, and use this to deduce cases of the usual integral Hodge conjecture for varieties. Along the way, we prove a version of the variational integral Hodge conjecture for families of two-dimensional Calabi–Yau categories, as well as a general smoothness result for relative moduli spaces of objects in such families. Our machinery also has applications to the structure of intermediate Jacobians, such as a criterion in terms of derived categories for when they split as a sum of Jacobians of curves.
more »
« less
- PAR ID:
- 10329185
- Date Published:
- Journal Name:
- Compositio Mathematica
- Volume:
- 158
- Issue:
- 2
- ISSN:
- 0010-437X
- Page Range / eLocation ID:
- 287 to 333
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
For a large class of maximally degenerate families of Calabi–Yau hypersurfaces of complex projective space, we study non- Archimedean and tropical Monge–Ampère equations, taking place on the associated Berkovich space, and the essential skeleton therein, respectively. For a symmetric measure on the skeleton, we prove that the tropical equation admits a unique solution, up to an additive constant. Moreover, the solution to the non-Archimedean equation can be derived from the tropical solution, and is the restriction of a continuous semipositive toric metric on projective space. Together with the work of Yang Li, this implies the weak metric SYZ conjecture on the existence of special Lagrangian fibrations in our setting.more » « less
-
The Frobenius-Perron theory of an endofunctor of a k \Bbbk -linear category (recently introduced in Chen et al. [Algebra Number Theory 13 (2019), pp. 2005–2055]) provides new invariants for abelian and triangulated categories. Here we study Frobenius-Perron type invariants for derived categories of commutative and noncommutative projective schemes. In particular, we calculate the Frobenius-Perron dimension for domestic and tubular weighted projective lines, define Frobenius-Perron generalizations of Calabi-Yau and Kodaira dimensions, and provide examples. We apply this theory to the derived categories associated to certain Artin-Schelter regular and finite-dimensional algebras.more » « less
-
A bstract We establish an orientifold Calabi-Yau threefold database for h 1 , 1 ( X ) ≤ 6 by considering non-trivial ℤ 2 divisor exchange involutions, using a toric Calabi-Yau database ( www.rossealtman.com/tcy ). We first determine the topology for each individual divisor (Hodge diamond), then identify and classify the proper involutions which are globally consistent across all disjoint phases of the Kähler cone for each unique geometry. Each of the proper involutions will result in an orientifold Calabi-Yau manifold. Then we clarify all possible fixed loci under the proper involution, thereby determining the locations of different types of O -planes. It is shown that under the proper involutions, one typically ends up with a system of O 3 /O 7-planes, and most of these will further admit naive Type IIB string vacua. The geometries with freely acting involutions are also determined. We further determine the splitting of the Hodge numbers into odd/even parity in the orbifold limit. The final result is a class of orientifold Calabi-Yau threefolds with non-trivial odd class cohomology ( $$ {h}_{-}^{1,1} $$ h − 1 , 1 ( X/σ * ) ≠ 0).more » « less
-
Abstract We prove the integral Hodge conjecture for all 3-folds $X$ of Kodaira dimension zero with $H^{0}(X,K_{X})$ not zero. This generalizes earlier results of Voisin and Grabowski. The assumption is sharp, in view of counterexamples by Benoist and Ottem. We also prove similar results on the integral Tate conjecture. For example, the integral Tate conjecture holds for abelian 3-folds in any characteristic.more » « less