Abstract We construct singular quartic double fivefolds whose Kuznetsov component admits a crepant categorical resolution of singularities by a twisted Calabi–Yau threefold. We also construct rational specializations of these fivefolds where such a resolution exists without a twist. This confirms an instance of a higher-dimensional version of Kuznetsov’s rationality conjecture and of a noncommutative version of Reid’s fantasy on the connectedness of the moduli of Calabi–Yau threefolds. 
                        more » 
                        « less   
                    
                            
                            The integral Hodge conjecture for two-dimensional Calabi–Yau categories
                        
                    
    
            We formulate a version of the integral Hodge conjecture for categories, prove the conjecture for two-dimensional Calabi–Yau categories which are suitably deformation equivalent to the derived category of a K3 or abelian surface, and use this to deduce cases of the usual integral Hodge conjecture for varieties. Along the way, we prove a version of the variational integral Hodge conjecture for families of two-dimensional Calabi–Yau categories, as well as a general smoothness result for relative moduli spaces of objects in such families. Our machinery also has applications to the structure of intermediate Jacobians, such as a criterion in terms of derived categories for when they split as a sum of Jacobians of curves. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10329185
- Date Published:
- Journal Name:
- Compositio Mathematica
- Volume:
- 158
- Issue:
- 2
- ISSN:
- 0010-437X
- Page Range / eLocation ID:
- 287 to 333
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We prove a functional transcendence theorem for the integrals of algebraic forms in families of algebraic varieties. This allows us to prove a geometric version of André’s generalization of the Grothendieck period conjecture, which we state using the formalism of Nori motives. More precisely, we prove a version of the Ax–Schanuel conjecture for the comparison between the flat and algebraic coordinates of an arbitrary admissible graded polarizable variation of integral mixed Hodge structures. This can be seen as a generalization of the recent Ax–Schanuel theorems of [13, 18] for mixed period maps.more » « less
- 
            Abstract We develop a theory of Bridgeland stability conditions and moduli spaces of semistable objects for a family of varieties. Our approach is based on and generalizes previous work by Abramovich–Polishchuk, Kuznetsov, Lieblich, and Piyaratne–Toda. Our notion includes openness of stability, semistable reduction, a support property uniformly across the family, and boundedness of semistable objects. We show that such a structure exists whenever stability conditions are known to exist on the fibers. Our main application is the generalization of Mukai’s theory for moduli spaces of semistable sheaves on K3 surfaces to moduli spaces of Bridgeland semistable objects in the Kuznetsov component associated to a cubic fourfold. This leads to the extension of theorems by Addington–Thomas and Huybrechts on the derived category of special cubic fourfolds, to a new proof of the integral Hodge conjecture, and to the construction of an infinite series of unirational locally complete families of polarized hyperkähler manifolds of K3 type. Other applications include the deformation-invariance of Donaldson–Thomas invariants counting Bridgeland stable objects on Calabi–Yau threefolds, and a method for constructing stability conditions on threefolds via degeneration.more » « less
- 
            For a large class of maximally degenerate families of Calabi–Yau hypersurfaces of complex projective space, we study non- Archimedean and tropical Monge–Ampère equations, taking place on the associated Berkovich space, and the essential skeleton therein, respectively. For a symmetric measure on the skeleton, we prove that the tropical equation admits a unique solution, up to an additive constant. Moreover, the solution to the non-Archimedean equation can be derived from the tropical solution, and is the restriction of a continuous semipositive toric metric on projective space. Together with the work of Yang Li, this implies the weak metric SYZ conjecture on the existence of special Lagrangian fibrations in our setting.more » « less
- 
            The Frobenius-Perron theory of an endofunctor of a k \Bbbk -linear category (recently introduced in Chen et al. [Algebra Number Theory 13 (2019), pp. 2005–2055]) provides new invariants for abelian and triangulated categories. Here we study Frobenius-Perron type invariants for derived categories of commutative and noncommutative projective schemes. In particular, we calculate the Frobenius-Perron dimension for domestic and tubular weighted projective lines, define Frobenius-Perron generalizations of Calabi-Yau and Kodaira dimensions, and provide examples. We apply this theory to the derived categories associated to certain Artin-Schelter regular and finite-dimensional algebras.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    