skip to main content


Title: Manjiroite or hydrous hollandite?
Abstract In this study, we investigated an unusual natural Mn oxide hollandite-group mineral from the Kohare Mine, Iwate Prefecture, Japan, that has predominantly water molecules in the tunnels, with K, Na, Ca, and Ba. The specimens are labeled as type manjiroite, but our analyses show that Na is not the dominant tunnel species, nor is it even the primary tunnel cation, suggesting either an error in the original analyses or significant compositional variation within samples from the type locality. Chemical analyses, X-ray photoelectron spectroscopy, and thermal gravimetric analysis measurements combined with Rietveld refinement results using synchrotron X-ray powder diffraction data suggest the chemical formula: (K0.19Na0.17Ca0.03Ba0.01H2O1.60)(Mn5.024+Mn2.823+Al0.14Fe0.02)O13.47(OH)2.53. Our analyses indicate that water is the primary tunnel species, and although water has been reported as a component in natural hollandites, this is the first detailed study of the crystal structure and dehydration behavior of a natural hydrous hollandite with water as the predominant tunnel species. This work underscores the rarity of natural Na-rich hollandite phases and focuses new attention on the role of hydrous components of hollandite-like phases in determining their capacities to exchange or accommodate various cations, such as Li+, Na+, Ba2+, Pb2+, and K+ in natural systems.  more » « less
Award ID(s):
1925903
NSF-PAR ID:
10329441
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
American Mineralogist
Volume:
107
Issue:
4
ISSN:
0003-004X
Page Range / eLocation ID:
564 to 571
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Olivine is the most abundant mineral in the Earth's upper mantle and subducting slabs. Studying the structural evolution and equation of state of olivine at high-pressure is of fundamental importance in constraining the composition and structure of these regions. Hydrogen can be incorporated into olivine and significantly influence its physical and chemical properties. Previous infrared and Raman spectroscopic studies indicated that local structural changes occur in Mg-rich hydrous olivine (Fo ≥ 95; 4883–9000 ppmw water) at high-pressure. Since water contents of natural olivine are commonly <1000 ppmw, it is inevitable to investigate the effects of such water contents on the equation of state (EoS) and structure of olivine at high-pressure. Here we synthesized a low water content hydrous olivine (Fo95; 1538 ppmw water) at low SiO2 activity and identified that the incorporated hydrogens are predominantly associated with the Si sites. We performed high-pressure single-crystal X-ray diffraction experiments on this olivine to 29.9 GPa. A third-order Birch-Murnaghan equation of state (BM3 EoS) was fit to the pressure-volume data, yielding the following EoS parameters: VT0 = 290.182(1) Å3, KT0 = 130.8(9) GPa, and K′T0 = 4.16(8). The KT0 is consistent with those of anhydrous Mg-rich olivine, which indicates that such low water content has negligible effects on the bulk modulus of olivine. Furthermore, we carried out the structural refinement of this hydrous olivine as a function of pressure to 29.9 GPa. The results indicate that, similar to the anhydrous olivine, the compression of the M1-O and M2-O bonds are comparable, which are larger than that of the Si-O bonds. The compression of M1-O and M2-O bonds of this hydrous olivine are comparable with those of anhydrous olivine, while the Si-O1 and Si-O2 bonds in the hydrous olivine are more compressible than those in the anhydrous olivine. Therefore, this study suggests that low water content has negligible effects on the EoS of olivine, though the incorporation of water softens the Si-O1 and Si-O2 bond. 
    more » « less
  2. Abstract

    The mineral apatite, Ca10(PO4)6(F,OH,Cl)2, incorporates sulfur (S) during crystallization from S-bearing hydrothermal fluids and silicate melts. Our previous studies of natural and experimental apatite demonstrate that the oxidation state of S in apatite varies systematically as a function of oxygen fugacity (fO2). The S oxidation states –1 and –2 were quantitatively identified in apatite crystallized from reduced, S-bearing hydrothermal fluids and silicate melts by using sulfur K-edge X-ray absorption near-edge structure spectroscopy (S-XANES) where S 6+/ΣS in apatite increases from ~0 at FMQ-1 to ~1 at FMQ+2, where FMQ refers to the fayalite-magnetite-quartz fO2 buffer. In this study, we employ quantum-mechanical calculations to investigate the atomistic structure and energetics of S(-I) and S(-II) incorporated into apatite and elucidate incorporation mechanisms.

    One S(-I) species (disulfide, S22−) and two S(-II) species (bisulfide, HS−, and sulfide, S2−) are investigated as possible forms of reduced S species in apatite. In configuration models for the simulation, these reduced S species are positioned along the c-axis channel, originally occupied by the column anions F, Cl, and OH in the end-member apatites. In the lowest-energy configurations of S-incorporated apatite, disulfide prefers to be positioned halfway between the mirror planes at z = 1/4 and 3/4. In contrast, the energy-optimized bisulfide is located slightly away from the mirror planes by ~0.04 fractional units in the c direction. The energetic stability of these reduced S species as a function of position along the c-axis can be explained by the geometric and electrostatic constraints of the Ca and O planes that constitute the c-axis channel.

    The thermodynamics of incorporation of disulfide and bisulfide into apatite is evaluated by using solid-state reaction equations where the apatite host and a solid S-bearing source phase (pyrite and Na2S2(s) for disulfide; troilite and Na2S(s) for sulfide) are the reactants, and the S-incorporated apatite and an anion sink phase are the products. The Gibbs free energy (ΔG) is lower for incorporation with Na-bearing phases than with Fe-bearing phases, which is attributed to the higher energetic stability of the iron sulfide minerals as a source phase for S than the sodium sulfide phases. The thermodynamics of incorporation of reduced S is also evaluated by using reaction equations involving dissolved disulfide and sulfide species [HnS(aq)(2−n) and HnS(aq)(2−n); n = 0, 1, and 2] as a source phase. The ΔG of S-incorporation increases for fluorapatite and chlorapatite, and decreases for hydroxylapatite, as these species are protonated (i.e., as n changes from 0 to 2). These thermodynamic results demonstrate that the presence of reduced S in apatite is primarily controlled by the chemistry of magmatic and hydrothermal systems where apatite forms (e.g., an abundance of Fe; solution pH). Ultimately, our methodology developed for evaluating the thermodynamics of S incorporation in apatite as a function of temperature, pH, and composition is highly applicable to predicting the trace and volatile element incorporation in minerals in a variety of geological systems. In addition to solid-solid and solid-liquid equilibria treated here at different temperatures and pH, the methodology can be easily extended to different pressure conditions by just performing the quantum-mechanical calculations at elevated pressures.

     
    more » « less
  3. The mineral apatite, Ca10(PO4)6(F,OH,Cl)2, incorporates sulfur (S) during crystallization from S-bearing hydrothermal fluids and silicate melts. Our previous studies of natural and experimental apatite demonstrate that the oxidation state of S in apatite varies systematically as a function of oxygen fugacity (fO2). The S oxidation states –1 and –2 were quantitatively identified in apatite crystallized from reduced, S-bearing hydrothermal fluids and silicate melts by using sulfur K-edge X‑ray absorption near-edge structure spectroscopy (S-XANES) where S6+/ΣS in apatite increases from ~0 at FMQ-1 to ~1 at FMQ+2, where FMQ refers to the fayalite-magnetite-quartz fO2 buffer. In this study, we employ quantum-mechanical calculations to investigate the atomistic structure and energetics of S(-I) and S(-II) incorporated into apatite and elucidate incorporation mechanisms. One S(-I) species (disulfide, S22−) and two S(-II) species (bisulfide, HS−, and sulfide, S2−) are investigated as possible forms of reduced S species in apatite. In configuration models for the simulation, these reduced S species are positioned along the c-axis channel, originally occupied by the column anions F, Cl, and OH in the end-member apatites. In the lowest-energy configurations of S-incorporated apatite, disulfide prefers to be positioned halfway between the mirror planes at z = 1/4 and 3/4. In contrast, the energy-optimized bisulfide is located slightly away from the mirror planes by ~0.04 fractional units in the c direction. The energetic stability of these reduced S species as a function of position along the c-axis can be explained by the geometric and electrostatic constraints of the Ca and O planes that constitute the c-axis channel. The thermodynamics of incorporation of disulfide and bisulfide into apatite are evaluated by using solid-state reaction equations where the apatite host and a solid S-bearing source phase (pyrite and Na2S2(s) for disulfide; troilite and Na2S(s) for sulfide) are the reactants, and the S-incorporated apatite and an anion sink phase are the products. The Gibbs free energy (ΔG) is lower for incorporation with Na-bearing phases than with Fe-bearing phases, which is attributed to the higher energetic stability of the iron sulfide minerals as a source phase for S than the sodium sulfide phases. The thermodynamics of incorporation of reduced S are also evaluated by using reaction equations involving dissolved disulfide and sulfide species [HnS2(aq)(2–n) and HnS(aq)(2–n); n = 0, 1, and 2] as a source phase. The ΔG of S-incorporation increases for fluorapatite and chlorapatite and decreases for hydroxylapatite as these species are protonated (i.e., as n changes from 0 to 2). These thermodynamic results demonstrate that the presence of reduced S in apatite is primarily controlled by the chemistry of magmatic and hydrothermal systems where apatite forms (e.g., an abundance of Fe; solution pH). Ultimately, our methodology developed for evaluating the thermodynamics of S incorporation in apatite as a function of temperature, pH, and composition is highly applicable to predicting the trace and volatile element incorporation in minerals in a variety of geological systems. In addition to solid-solid and solid-liquid equilibria treated here at different temperatures and pH, the methodology can be easily extended also to different pressure conditions by just performing the quantum-mechanical calculations at elevated pressures. 
    more » « less
  4. Abstract Scapolites are pervasive rock-forming aluminosilicates that are found in metamorphic, igneous, and hydrothermal environments; nonetheless, the stability field of Cl-rich scapolite is not well constrained. This experimental study investigated two reactions involving Cl-rich scapolite. First, the anhydrous reaction 1 of plagioclase + halite + calcite to form scapolite [modeled as: 3 plagioclase (Ab80An20) + 0.8 NaCl + 0.2 CaCO3 = scapolite (Ma80Me20)] was investigated to determine the effect of the Ca-rich meionite (Me = Ca4Al6Si6O24CO3) component on the Na end-member marialite (Ma = Na4Al3Si9O24Cl). Second, the effect of water on this reaction was investigated using the hydrothermally equivalent reaction 2, H2O + scapolite (Ma80Me20) = 3 plagioclase (Ab80An20) + CaCO3 + liquid, where the liquid is assumed to be a saline-rich hydrous-silicate melt. Experiments were conducted with synthetic phases over the range of 500–1030 °C and 0.4–2.0 GPa. For reaction 1, intermediate composition scapolite shows a wide thermal stability and is stable relative to plagioclase + halite + calcite at temperatures above 750 °C at 0.4 GPa and 760 °C at 2.0 GPa. For reaction 2, intermediate scapolite appears to be quite tolerant of water; it forms at a minimum bulk salinity [XNaCl = molar ratio of NaCl/(NaCl+H2O)] of the brine of approximately 0.2 XNaCl at 830 and 680 °C at pressures of 2.0 and 1.5 GPa, respectively. Based on the study done by Almeida and Jenkins (2017), pure marialite is very intolerant of water when compared to intermediate composition scapolite. Compositional changes in the scapolite and plagioclase were characterized by X-ray diffraction and electron microprobe analysis and found to shift from the nominal bulk compositions to the observed compositions of Ma85Me15 for scapolite and to Ab91An09 for plagioclase. These results were used to model the phase equilibria along the marialitemeionite join in temperature-composition space. This study demonstrates that a small change in the scapolite composition from end-member marialite to Ma85Me15 expands the stability field of marialite significantly, presumably due to the high entropy of mixing in scapolite, as well as increases its tolerance to water. This supports the much more common presence of intermediate scapolites in hydrothermal settings than either end-member meionite or marialite as is widely reported in the literature. 
    more » « less
  5. The reactivity of metals associated with ash from wood collected from the Valles Caldera National Preserve, Jemez Mountains, New Mexico, was assessed through a series of laboratory experiments. Microscopy, spectroscopy, diffraction, and aqueous chemistry measurements were integrated to determine the chemical composition of wood ash and its effect on water chemistry. Climate change has caused dramatic impacts and stresses that have resulted in large-scale increases in wildfire activity in semi-arid areas of the world. Metals and other constituents associated with wildfire ash can be transported by storm event runoff and negatively affect the water quality in streams and rivers. Differences among ash from six tree species based on total concentrations of metals such as Ca, Al, Mg, Fe, and Mn were identified using non-metric multidimensional analysis. Metal-bearing carbonate and oxide phases were quantified by X-ray diffraction analyses and X-ray spectroscopy analyses. These metal-bearing carbonate phases were readily dissolved in the first 30 minutes of reaction with 18 MΩ water and 10 mM HCO 3 − in laboratory batch experiments which resulted in the release of metals and carbonates in the ash, causing water alkalinity to increase. However, metal concentrations decreased over the course of the experiment, suggesting that metals re-adsorb to ash. Our results suggest that the dissolution of metal-bearing carbonate and oxide phases in ash and metal re-adsorption to ash are relevant processes affecting water chemistry after wildfire events. These results have important implications to better understand the impact of wildfire events on water quality. 
    more » « less