skip to main content


Title: Relativistic Particle Transport and Acceleration in Structured Plasma Turbulence
We discuss the phenomenon of energization of relativistic charged particles in three-dimensional incompressible MHD turbulence and the diffusive properties of the motion of the same particles. We show that the random electric field induced by turbulent plasma motion leads test particles moving in a simulated box to be accelerated in a stochastic way, a second-order Fermi process. A small fraction of these particles happen to be trapped in large scale structures, most likely formed due to the interaction of islands in the turbulence. Such particles get accelerated exponentially, provided their pitch angle satisfies some conditions. We discuss at length the characterization of the accelerating structure and the physical processes responsible for rapid acceleration. We also comment on the applicability of the results to realistic astrophysical turbulence.  more » « less
Award ID(s):
2108834
NSF-PAR ID:
10329564
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Astrophysical journal
Volume:
928
ISSN:
0004-637X
Page Range / eLocation ID:
25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We investigate acceleration and propagation processes of high-energy particles inside hot accretion flows. The magnetorotational instability (MRI) creates turbulence inside accretion flows, which triggers magnetic reconnection and may produce non-thermal particles. They can be further accelerated stochastically by the turbulence. To probe the properties of such relativistic particles, we perform magnetohydrodynamic simulations to obtain the turbulent fields generated by the MRI, and calculate orbits of the high-energy particles using snapshot data of the MRI turbulence. We find that the particle acceleration is described by a diffusion phenomenon in energy space with a diffusion coefficient of the hard-sphere type: Dε ∝ ε2, where ε is the particle energy. Eddies in the largest scale of the turbulence play a dominant role in the acceleration process. On the other hand, the stochastic behaviour in configuration space is not usual diffusion but superdiffusion: the radial displacement increases with time faster than that in the normal diffusion. Also, the magnetic field configuration in the hot accretion flow creates outward bulk motion of high-energy particles. This bulk motion is more effective than the diffusive motion for higher energy particles. Our results imply that typical active galactic nuclei that host hot accretion flows can accelerate CRs up to ε ∼ 0.1−10 PeV.

     
    more » « less
  2. Abstract

    Particles are accelerated to very high, non-thermal energies during explosive energy-release phenomena in space, solar, and astrophysical plasma environments. While it has been established that magnetic reconnection plays an important role in the dynamics of Earth’s magnetosphere, it remains unclear how magnetic reconnection can further explain particle acceleration to non-thermal energies. Here we review recent progress in our understanding of particle acceleration by magnetic reconnection in Earth’s magnetosphere. With improved resolutions, recent spacecraft missions have enabled detailed studies of particle acceleration at various structures such as the diffusion region, separatrix, jets, magnetic islands (flux ropes), and dipolarization front. With the guiding-center approximation of particle motion, many studies have discussed the relative importance of the parallel electric field as well as the Fermi and betatron effects. However, in order to fully understand the particle acceleration mechanism and further compare with particle acceleration in solar and astrophysical plasma environments, there is a need for further investigation of, for example, energy partition and the precise role of turbulence.

     
    more » « less
  3. Abstract The processes controlling the complex clump structure, phase distribution, and magnetic field geometry that develop across a broad range of scales in the turbulent interstellar medium (ISM) remain unclear. Using unprecedentedly high-resolution 3D magnetohydrodynamic simulations of thermally unstable turbulent systems, we show that large current sheets unstable to plasmoid-mediated reconnection form regularly throughout the volume. The plasmoids form in three distinct environments: (i) within cold clumps, (ii) at the asymmetric interface of the cold and warm phases, and (iii) within the warm, volume-filling phase. We then show that the complex magnetothermal phase structure is characterized by a predominantly highly magnetized cold phase, but that regions of high magnetic curvature, which are the sites of reconnection, span a broad range in temperature. Furthermore, we show that thermal instabilities change the scale-dependent anisotropy of the turbulent magnetic field, reducing the increase in eddy elongation at smaller scales. Finally, we show that most of the mass is contained in one contiguous cold structure surrounded by smaller clumps that follow a scale-free mass distribution. These clumps tend to be highly elongated and exhibit a size versus internal velocity relation consistent with supersonic turbulence and a relative clump distance–velocity scaling consistent with subsonic motion. We discuss the striking similarity of cold plasmoids to observed tiny-scale atomic and ionized structures and H i fibers and consider how the presence of plasmoids will modify the motion of charged particles, thereby impacting cosmic-ray transport and thermal conduction in the ISM and other similar systems. 
    more » « less
  4. Abstract We investigate the interaction of turbulence with shock waves by performing 2D hybrid kinetic simulations. We inject force-free magnetic fields upstream that are unstable to the tearing-mode instability. The magnetic fields evolve into turbulence and interact with a shock wave whose sonic Mach number is 2.4. Turbulence properties, the total and normalized residual energy and the normalized cross helicity, change across the shock wave. While the energy of velocity and magnetic fluctuations is mostly distributed equally upstream, the velocity fluctuations are amplified dominantly downstream of the shock wave. The amplitude of turbulence spectra for magnetic, velocity, and density fluctuations are also increased at the shock wave while their spectral index remains unchanged. We compare our results with the Zank et al. model of turbulence transmission across a shock, and find that it provides a reasonable explanation for the spectral change across the shock wave. We find that particles are efficiently accelerated at the shock front, and a power-law spectrum forms downstream. This can be explained by diffusive shock acceleration, in which particles gain energy by being scattered upstream and downstream of a shock wave. The trajectory of an accelerated particle suggests that upstream turbulence plays a role scattering of particles. 
    more » « less
  5. Abstract

    Relativistic magnetically dominated turbulence is an efficient engine for particle acceleration in a collisionless plasma. Ultrarelativistic particles accelerated by interactions with turbulent fluctuations form nonthermal power-law distribution functions in the momentum (or energy) space,f(γ)dγγαdγ, whereγis the Lorenz factor. We argue that in addition to exhibiting non-Gaussian distributions over energies, particles energized by relativistic turbulence also become highly intermittent in space. Based on particle-in-cell numerical simulations and phenomenological modeling, we propose that the bulk plasma density has lognormal statistics, while the density of the accelerated particles,n, has a power-law distribution function,P(n)dnnβdn. We argue that the scaling exponents are related asβα+ 1, which is broadly consistent with numerical simulations. Non-space-filling, intermittent distributions of plasma density and energy fluctuations may have implications for plasma heating and for radiation produced by relativistic turbulence.

     
    more » « less