skip to main content

Title: Electromagnetic transients and gravitational waves from white dwarf disruptions by stellar black holes in triple systems
ABSTRACT Mergers of binaries comprising compact objects can give rise to explosive transient events, heralding the birth of exotic objects that cannot be formed through single-star evolution. Using a large number of direct N-body simulations, we explore the possibility that a white dwarf (WD) is dynamically driven to tidal disruption by a stellar-mass black hole (BH) as a consequence of the joint effects of gravitational wave (GW) emission and Lidov–Kozai oscillations imposed by the tidal field of an outer tertiary companion orbiting the inner BH–WD binary. We explore the sensitivity of our results to the distributions of natal kick velocities imparted to the BH and WD upon formation, adiabatic mass loss, semimajor axes and eccentricities of the triples, and stellar-mass ratios. We find rates of WD–tidal disruption events (TDEs) in the range 1.2 × 10−3 − 1.4 Gpc−3 yr−1 for z ≤ 0.1, rarer than stellar TDEs in triples by a factor of ∼3–30. The uncertainty in the TDE rates may be greatly reduced in the future using GW observations of Galactic binaries and triples with LISA. WD–TDEs may give rise to high-energy X-ray or gamma-ray transients of duration similar to long gamma-ray bursts but lacking the signatures of a core-collapse supernova, more » while being accompanied by a supernova-like optical transient that lasts for only days. WD–BH and WD–NS binaries will also emit GWs in the LISA band before the TDE. The discovery and identification of triple-induced WD–TDE events by future time domain surveys and/or GWs could enable the study of the demographics of BHs in nearby galaxies. « less
Authors:
; ; ; ;
Award ID(s):
2009255
Publication Date:
NSF-PAR ID:
10329591
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
495
Issue:
1
Page Range or eLocation-ID:
1061 to 1072
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT When a star passes close to a supermassive black hole (BH), the BH’s tidal forces rip it apart into a thin stream, leading to a tidal disruption event (TDE). In this work, we study the post-disruption phase of TDEs in general relativistic hydrodynamics (GRHD) using our GPU-accelerated code h-amr. We carry out the first grid-based simulation of a deep-penetration TDE (β = 7) with realistic system parameters: a black hole-to-star mass ratio of 106, a parabolic stellar trajectory, and a non-zero BH spin. We also carry out a simulation of a tilted TDE whose stellar orbit is inclined relative to the BH midplane. We show that for our aligned TDE, an accretion disc forms due to the dissipation of orbital energy with ∼20 per cent of the infalling material reaching the BH. The dissipation is initially dominated by violent self-intersections and later by stream–disc interactions near the pericentre. The self-intersections completely disrupt the incoming stream, resulting in five distinct self-intersection events separated by approximately 12 h and a flaring in the accretion rate. We also find that the disc is eccentric with mean eccentricity e ≈ 0.88. For our tilted TDE, we find only partial self-intersections due to nodal precession near pericentre. Althoughmore »these partial intersections eject gas out of the orbital plane, an accretion disc still forms with a similar accreted fraction of the material to the aligned case. These results have important implications for disc formation in realistic tidal disruptions. For instance, the periodicity in accretion rate induced by the complete stream disruption may explain the flaring events from Swift J1644+57.« less
  2. Abstract We explore the observational appearance of the merger of a low-mass star with a white dwarf (WD) binary companion. We are motivated by recent work finding that multiple tensions between the observed properties of cataclysmic variables (CVs) and standard evolution models are resolved if a large fraction of CV binaries merge as a result of unstable mass transfer. Tidal disruption of the secondary forms a geometrically thick disk around the WD, which subsequently accretes at highly super-Eddington rates. Analytic estimates and numerical hydrodynamical simulations reveal that outflows from the accretion flow unbind a large fraction ≳90% of the secondary at velocities ∼500–1000 km s −1 within days of the merger. Hydrogen recombination in the expanding ejecta powers optical transient emission lasting about a month with a luminosity ≳10 38 erg s −1 , similar to slow classical novae and luminous red novae from ordinary stellar mergers. Over longer timescales the mass accreted by the WD undergoes hydrogen shell burning, inflating the remnant into a giant of luminosity ∼300–5000 L ⊙ , effective temperature T eff ≈ 3000 K, and lifetime ∼10 4 –10 5 yr. We predict that ∼10 3 –10 4 Milky Way giants are CV merger products,more »potentially distinguishable by atypical surface abundances. We explore whether any Galactic historical slow classical novae are masquerading CV mergers by identifying four such post-nova systems with potential giant counterparts for which a CV merger origin cannot be ruled out. We address whether the historical transient CK Vul and its gaseous/dusty nebula resulted from a CV merger.« less
  3. Abstract Active galactic nuclei (AGNs) can funnel stars and stellar remnants from the vicinity of the galactic center into the inner plane of the AGN disk. Stars reaching this inner region can be tidally disrupted by the stellar-mass black holes in the disk. Such micro tidal disruption events (micro-TDEs) could be a useful probe of stellar interaction with the AGN disk. We find that micro-TDEs in AGNs occur at a rate of ∼170 Gpc −3 yr −1 . Their cleanest observational probe may be the electromagnetic detection of tidal disruption in AGNs by heavy supermassive black holes ( M • ≳ 10 8 M ⊙ ) that cannot tidally disrupt solar-type stars. The reconstructed rate of such events from observations, nonetheless, appears to be much lower than our estimated micro-TDE rate. We discuss two such micro-TDE candidates observed to date (ASASSN-15lh and ZTF19aailpwl).
  4. ABSTRACT In dense star clusters, such as globular and open clusters, dynamical interactions between stars and black holes (BHs) can be extremely frequent, leading to various astrophysical transients. Close encounters between a star and a stellar mass BH make it possible for the star to be tidally disrupted by the BH. Due to the relative low mass of the BH and the small cross-section of the tidal disruption event (TDE) for cases with high penetration, disruptions caused by close encounters are usually partial disruptions. The existence of the remnant stellar core and its non-negligible mass compared to the stellar mass BH alters the accretion process significantly. We study this problem with SPH simulations using the code Phantom, with the inclusion of radiation pressure, which is important for small mass BHs. Additionally, we develop a new, more general method of computing the fallback rate which does not rely on any approximation. Our study shows that the powerlaw slope of the fallback rate has a strong dependence on the mass of the BH in the stellar mass BH regime. Furthermore, in this regime, self-gravity of the fallback stream and local instabilities become more significant, and cause the disrupted material to collapse intomore »small clumps before returning to the BH. This results in an abrupt increase of the fallback rate, which can significantly deviate from a powerlaw. Our results will help in the identification of TDEs by stellar mass BHs in dense clusters.« less
  5. ABSTRACT Compact white dwarf (WD) binaries are important sources for space-based gravitational-wave (GW) observatories, and an increasing number of them are being identified by surveys like Extremely Low Mass (ELM) and Zwicky Transient Facility (ZTF). We study the effects of non-linear dynamical tides in such binaries. We focus on the global three-mode parametric instability and show that it has a much lower threshold energy than the local wave-breaking condition studied previously. By integrating networks of coupled modes, we calculate the tidal dissipation rate as a function of orbital period. We construct phenomenological models that match these numerical results and use them to evaluate the spin and luminosity evolution of a WD binary. While in linear theory the WD’s spin frequency can lock to the orbital frequency, we find that such a lock cannot be maintained when non-linear effects are taken into account. Instead, as the orbit decays, the spin and orbit go in and out of synchronization. Each time they go out of synchronization, there is a brief but significant dip in the tidal heating rate. While most WDs in compact binaries should have luminosities that are similar to previous traveling-wave estimates, a few per cent should be about 10 times dimmermore »because they reside in heating rate dips. This offers a potential explanation for the low luminosity of the CO WD in J0651. Lastly, we consider the impact of tides on the GW signal and show that the Laser Interferometer Space Antenna (LISA) and TianGO can constrain the WD’s moment of inertia to better than $1{{\ \rm per\ cent}}$ for centi-Hz systems.« less