skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Querying a Matrix through Matrix-Vector Products
We consider algorithms with access to an unknown matrix M ε F n×d via matrix-vector products , namely, the algorithm chooses vectors v 1 , ⃛ , v q , and observes Mv 1 , ⃛ , Mv q . Here the v i can be randomized as well as chosen adaptively as a function of Mv 1 , ⃛ , Mv i-1 . Motivated by applications of sketching in distributed computation, linear algebra, and streaming models, as well as connections to areas such as communication complexity and property testing, we initiate the study of the number q of queries needed to solve various fundamental problems. We study problems in three broad categories, including linear algebra, statistics problems, and graph problems. For example, we consider the number of queries required to approximate the rank, trace, maximum eigenvalue, and norms of a matrix M; to compute the AND/OR/Parity of each column or row of M, to decide whether there are identical columns or rows in M or whether M is symmetric, diagonal, or unitary; or to compute whether a graph defined by M is connected or triangle-free. We also show separations for algorithms that are allowed to obtain matrix-vector products only by querying vectors on the right, versus algorithms that can query vectors on both the left and the right. We also show separations depending on the underlying field the matrix-vector product occurs in. For graph problems, we show separations depending on the form of the matrix (bipartite adjacency versus signed edge-vertex incidence matrix) to represent the graph. Surprisingly, very few works discuss this fundamental model, and we believe a thorough investigation of problems in this model would be beneficial to a number of different application areas.  more » « less
Award ID(s):
1815840
PAR ID:
10330050
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Algorithms
Volume:
17
Issue:
4
ISSN:
1549-6325
Page Range / eLocation ID:
1 to 19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the time and space required for quantum computers to solve a wide variety of problems involving matrices, many of which have only been analyzed classically in prior work. Our main results show that for a range of linear algebra problems—including matrix-vector product, matrix inversion, matrix multiplication and powering—existing classical time-space tradeoffs, several of which are tight for every space bound, also apply to quantum algorithms with at most a constant factor loss. For example, for almost all fixed matrices A, including the discrete Fourier transform (DFT) matrix, we prove that quantum circuits with at most T input queries and S qubits of memory require T = Ω(n^2/S) to compute matrix-vector product Ax for x ∈ {0, 1}^n. We similarly prove that matrix multiplication for n × n binary matrices requires T = Ω(n^3/√S). Because many of our lower bounds are matched by deterministic algorithms with the same time and space complexity, our results show that quantum computers cannot provide any asymptotic advantage for these problems with any space bound. We obtain matching lower bounds for the stronger notion of quantum cumulative memory complexity—the sum of the space per layer of a circuit. We also consider Boolean (i.e. AND-OR) matrix multiplication and matrix-vector products, improving the previous quantum time-space tradeoff lower bounds for n × n Boolean matrix multiplication to T = Ω(n^{2.5}/S^{1/4}) from T = Ω(n^{2.5}/S^{1/2}). Our improved lower bound for Boolean matrix multiplication is based on a new coloring argument that extracts more from the strong direct product theorem that was the basis for prior work. To obtain our tight lower bounds for linear algebra problems, we require much stronger bounds than strong direct product theorems. We obtain these bounds by adding a new bucketing method to the quantum recording-query technique of Zhandry that lets us apply classical arguments to upper bound the success probability of quantum circuits. 
    more » « less
  2. We prove lower bounds on the time and space required for quantum computers to solve a wide variety of problems involving matrices, many of which have only been analyzed classically in prior work. Using a novel way of applying recording query methods we show that for many linear algebra problems—including matrix-vector product, matrix inversion, matrix multiplication and powering—existing classical time-space tradeoffs also apply to quantum algorithms with at most a constant factor loss. For example, for almost all fixed matrices A, including the discrete Fourier transform (DFT) matrix, we prove that quantum circuits with at most T input queries and S qubits of memory require T=Ω(n^2/S) to compute matrix-vector product Ax for x ∈ {0,1}^n. We similarly prove that matrix multiplication for nxn binary matrices requires T=Ω(n^3/√S). Because many of our lower bounds are matched by deterministic algorithms with the same time and space complexity, our results show that quantum computers cannot provide any asymptotic advantage for these problems at any space bound. We also improve the previous quantum time-space tradeoff lower bounds for n× n Boolean (i.e. AND-OR) matrix multiplication from T=Ω(n^2.5/S^0.5) to T=Ω(n^2.5/S^0.25) which has optimal exponents for the powerful query algorithms to which it applies. Our method also yields improved lower bounds for classical algorithms. 
    more » « less
  3. null (Ed.)
    We investigate sublinear classical and quantum algorithms for matrix games, a fundamental problem in optimization and machine learning, with provable guarantees. Given a matrix, sublinear algorithms for the matrix game were previously known only for two special cases: (1) the maximizing vectors live in the L1-norm unit ball, and (2) the minimizing vectors live in either the L1- or the L2-norm unit ball. We give a sublinear classical algorithm that can interpolate smoothly between these two cases: for any fixed q between 1 and 2, we solve, within some additive error, matrix games where the minimizing vectors are in an Lq-norm unit ball. We also provide a corresponding sublinear quantum algorithm that solves the same task with a quadratic improvement in dimensions of the maximizing and minimizing vectors. Both our classical and quantum algorithms are optimal in the dimension parameters up to poly-logarithmic factors. Finally, we propose sublinear classical and quantum algorithms for the approximate Carathéodory problem and the Lq-margin support vector machines as applications. 
    more » « less
  4. Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)
    We give the first almost-linear time algorithm for computing the maximal k-edge-connected subgraphs of an undirected unweighted graph for any constant k. More specifically, given an n-vertex m-edge graph G = (V,E) and a number k = log^o(1) n, we can deterministically compute in O(m+n^{1+o(1)}) time the unique vertex partition {V_1,… ,V_z} such that, for every i, V_i induces a k-edge-connected subgraph while every superset V'_i ⊃ V_{i} does not. Previous algorithms with linear time work only when k ≤ 2 [Tarjan SICOMP'72], otherwise they all require Ω(m+n√n) time even when k = 3 [Chechik et al. SODA'17; Forster et al. SODA'20]. Our algorithm also extends to the decremental graph setting; we can deterministically maintain the maximal k-edge-connected subgraphs of a graph undergoing edge deletions in m^{1+o(1)} total update time. Our key idea is a reduction to the dynamic algorithm supporting pairwise k-edge-connectivity queries [Jin and Sun FOCS'20]. 
    more » « less
  5. null (Ed.)
    We consider the classical Minimum Balanced Cut problem: given a graph $$G$$, compute a partition of its vertices into two subsets of roughly equal volume, while minimizing the number of edges connecting the subsets. We present the first {\em deterministic, almost-linear time} approximation algorithm for this problem. Specifically, our algorithm, given an $$n$$-vertex $$m$$-edge graph $$G$$ and any parameter $$1\leq r\leq O(\log n)$$, computes a $$(\log m)^{r^2}$$-approximation for Minimum Balanced Cut on $$G$$, in time $$O\left ( m^{1+O(1/r)+o(1)}\cdot (\log m)^{O(r^2)}\right )$$. In particular, we obtain a $$(\log m)^{1/\epsilon}$$-approximation in time $$m^{1+O(1/\sqrt{\epsilon})}$$ for any constant $$\epsilon$$, and a $$(\log m)^{f(m)}$$-approximation in time $$m^{1+o(1)}$$, for any slowly growing function $$m$$. We obtain deterministic algorithms with similar guarantees for the Sparsest Cut and the Lowest-Conductance Cut problems. Our algorithm for the Minimum Balanced Cut problem in fact provides a stronger guarantee: it either returns a balanced cut whose value is close to a given target value, or it certifies that such a cut does not exist by exhibiting a large subgraph of $$G$$ that has high conductance. We use this algorithm to obtain deterministic algorithms for dynamic connectivity and minimum spanning forest, whose worst-case update time on an $$n$$-vertex graph is $$n^{o(1)}$$, thus resolving a major open problem in the area of dynamic graph algorithms. Our work also implies deterministic algorithms for a host of additional problems, whose time complexities match, up to subpolynomial in $$n$$ factors, those of known randomized algorithms. The implications include almost-linear time deterministic algorithms for solving Laplacian systems and for approximating maximum flows in undirected graphs. 
    more » « less