skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A wave optics based fiber scattering model
Existing fiber scattering models in rendering are all based on tracing rays through fiber geometry, but for small fibers diffraction and interference are non-negligible, so relying on ray optics can result in appearance errors. This paper presents the first wave optics based fiber scattering model, introducing an azimuthal scattering function that comes from a full wave simulation. Solving Maxwell's equations for a straight fiber of constant cross section illuminated by a plane wave reduces to solving for a 3D electromagnetic field in a 2D domain, and our fiber scattering simulator solves this 2.5D problem efficiently using the boundary element method (BEM). From the resulting fields we compute extinction, absorption, and far-field scattering distributions, which we use to simulate shadowing and scattering by fibers in a path tracer. We validate our path tracer against the wave simulation and the simulation against a measurement of diffraction from a single textile fiber. Our results show that our approach can reproduce a wide range of fibers with different sizes, cross sections, and material properties, including textile fibers, animal fur, and human hair. The renderings include color effects, softening of sharp features, and strong forward scattering that are not predicted by traditional ray-based models, though the two approaches produce similar appearance for complex fiber assemblies under many conditions.  more » « less
Award ID(s):
1909467
PAR ID:
10330206
Author(s) / Creator(s):
 ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
39
Issue:
6
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Traditional fiber scattering models, based on ray optics, are missing some important visual aspects of fiber appearance. Previous work [Xia et al. 2020] on wave scattering from ideal extrusions demonstrated that diffraction produces strong forward scattering and colorful effects that are missing from ray-based models. However, that work was unable to include some important surface characteristics such as surface roughness and tilted cuticle scales, which are known to be important for fiber appearance. In this work, we take an important step to study wave effects from rough fibers with arbitrary 3D microgeometry. While the full-wave simulation of realistic 3D fibers remains intractable, we developed a 3D wave optics simulator based on a physical optics approximation, using a GPU-based hierarchical algorithm to greatly accelerate the calculation. It simulates surface reflection and diffractive scattering, which are present in all fibers and typically dominate for darkly pigmented fibers. The simulation provides a detailed picture of first order scattering, but it is not practical to use for production rendering as this would require tabulation per fiber geometry. To practically handle geometry variations in the scene, we propose a model based on wavelet noise, capturing the important statistical features in the simulation results that are relevant for rendering. Both our simulation and practical model show similar granular patterns to those observed in optical measurement. Our compact noise model can be easily combined with existing scattering models to render hair and fur of various colors, introducing visually important colorful glints that were missing from all previous models. 
    more » « less
  2. null (Ed.)
    Ionic liquid based fiber welding has been used to attach the metal−organic framework (MOF) UiO-66-NH2to cotton fibers. The results show that by controlling the extent of the welding process, it is possible to produce fibers that contain a high surface area (approximately 50−100 m2/ g), an X-ray diffraction pattern consistent with UiO-66-NH2, and fibers that are chemically reactive to dimethyl 4-nitrophenyl phosphate (DMNP), a common chemical weapon simulant. The ionic liquid/MOF welding solution can be applied by directly placing the fabric in the welding solution or by utilizing an airbrushing technique. Both welding techniques are shown to be scalable with results collected on approximately 1×1, 5 ×5, and 15.5×15.5 in. swatches. The results are also applicable to weaving methods where the MOF is welded to individual threads and subsequently woven into a textile. The results provide an industrially scalable method of attaching a wide variety of MOFs to cotton textiles, which does not require synthesizing the MOF in the presence of the textile. 
    more » « less
  3. Computing light reflection from rough surfaces is an important topic in computer graphics. Reflection models developed based on geometric optics fail to capture wave effects such as diffraction and interference, while existing models based on physical optics approximations give erroneous predictions under many circumstances (e.g. when multiple scattering from the surface cannot be ignored). We present a scalable 3D full-wave simulator for computing reference solutions to surface scattering problems, which can be used to evaluate and guide the development of approximate models for rendering. We investigate the range of validity for some existing wave optics based reflection models; our results confirm these models for low-roughness surfaces but also show that prior rendering methods do not accurately predict the scattering behavior of some types of surfaces. Our simulator is based on the boundary element method (BEM) and accelerated using the adaptive integral method (AIM), and is implemented to execute on modern GPUs. We demonstrate the simulator on domains up to 60 × 60 × 10 wavelengths, involving surface samples with significant height variations. Furthermore, we propose a new system for efficiently computing BRDF values for large numbers of incident and outgoing directions at once, by combining small simulations to characterize larger areas. Our simulator will be released as an open-source toolkit for computing surface scattering. 
    more » « less
  4. We propose a novel integral model describing the motion of both flexible and rigid slender fibers in viscous flow and develop a numerical method for simulating dynamics of curved rigid fibers. The model is derived from nonlocal slender body theory (SBT), which approximates flow near the fiber using singular solutions of the Stokes equations integrated along the fiber centerline. In contrast to other models based on (singular) SBT, our model yields a smooth integral kernel which incorporates the (possibly varying) fiber radius naturally. The integral operator is provably negative definite in a nonphysical idealized geometry, as expected from the partial differential equation theory. This is numerically verified in physically relevant geometries. We discuss the convergence and stability of a numerical method for solving the integral equation. The accuracy of the model and method is verified against known models for ellipsoids. Finally, we develop an algorithm for computing dynamics of rigid fibers with complex geometries in the case where the fiber density is much greater than that of the fluid, for example, in turbulent gas-fiber suspensions. 
    more » « less
  5. The development of fibrous actuators with diverse actuation modes is expected to accelerate progress in active textiles, robotics, wearable electronics, and haptics. Despite the advances in responsive polymer-based actuating fibers, the available actuation modes are limited by the exclusive reliance of current technologies on thermotropic contraction along the fiber axis. To address this gap, the present study describes a reversible and spontaneous thermotropic elongation (~30%) in liquid crystal elastomer fibers produced via ultraviolet-assisted melt spinning. This elongation arises from the orthogonal alignment of smectogenic mesogens relative to the fiber axis, which contrasts the parallel alignment typically observed in nematic liquid crystal elastomer fibers and is achieved through mesophase control during extrusion. The fibers exhibiting thermotropic elongation enable active textiles increase pore size in response to temperature increase. The integration of contracting and elongating fibers within a single textile enables spatially distinct actuation, paving the way for innovations in smart clothing and fiber/textile actuators. 
    more » « less