skip to main content


Title: A wave optics based fiber scattering model
Existing fiber scattering models in rendering are all based on tracing rays through fiber geometry, but for small fibers diffraction and interference are non-negligible, so relying on ray optics can result in appearance errors. This paper presents the first wave optics based fiber scattering model, introducing an azimuthal scattering function that comes from a full wave simulation. Solving Maxwell's equations for a straight fiber of constant cross section illuminated by a plane wave reduces to solving for a 3D electromagnetic field in a 2D domain, and our fiber scattering simulator solves this 2.5D problem efficiently using the boundary element method (BEM). From the resulting fields we compute extinction, absorption, and far-field scattering distributions, which we use to simulate shadowing and scattering by fibers in a path tracer. We validate our path tracer against the wave simulation and the simulation against a measurement of diffraction from a single textile fiber. Our results show that our approach can reproduce a wide range of fibers with different sizes, cross sections, and material properties, including textile fibers, animal fur, and human hair. The renderings include color effects, softening of sharp features, and strong forward scattering that are not predicted by traditional ray-based models, though the two approaches produce similar appearance for complex fiber assemblies under many conditions.  more » « less
Award ID(s):
1909467
NSF-PAR ID:
10330206
Author(s) / Creator(s):
 ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
39
Issue:
6
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Traditional fiber scattering models, based on ray optics, are missing some important visual aspects of fiber appearance. Previous work [Xia et al. 2020] on wave scattering from ideal extrusions demonstrated that diffraction produces strong forward scattering and colorful effects that are missing from ray-based models. However, that work was unable to include some important surface characteristics such as surface roughness and tilted cuticle scales, which are known to be important for fiber appearance. In this work, we take an important step to study wave effects from rough fibers with arbitrary 3D microgeometry. While the full-wave simulation of realistic 3D fibers remains intractable, we developed a 3D wave optics simulator based on a physical optics approximation, using a GPU-based hierarchical algorithm to greatly accelerate the calculation. It simulates surface reflection and diffractive scattering, which are present in all fibers and typically dominate for darkly pigmented fibers. The simulation provides a detailed picture of first order scattering, but it is not practical to use for production rendering as this would require tabulation per fiber geometry. To practically handle geometry variations in the scene, we propose a model based on wavelet noise, capturing the important statistical features in the simulation results that are relevant for rendering. Both our simulation and practical model show similar granular patterns to those observed in optical measurement. Our compact noise model can be easily combined with existing scattering models to render hair and fur of various colors, introducing visually important colorful glints that were missing from all previous models.

     
    more » « less
  2. Abstract

    The field of electronic textiles currently lacks n‐type polymer fibers that can complement the more established p‐type polymer fibers. Here, a highly conductive n‐type polymer fiber is obtained via wet‐spinning of n‐doped poly(3,7‐dihydrobenzo[1,2‐b:4,5‐b’]difuran‐2,6‐dione) (n‐PBDF). The electrical conductivity of the fibers increases from 1000 to 1600 S cm−1with increased draw during processing and correlates well with Young's modulus. Wide‐angle X‐ray scattering reveals the existence of a bimodal orientation of the polymer chains, favoring parallel alignment to the fiber axis with increased draw. After 14 d in 80% humid air, fiber conductivity stabilizes maintaining 81% of the initial conductivity. Although the electrical conductivity drops slightly over time, the Seebeck coefficient increases, resulting in the highest thermoelectric power factor being measured at 91 µW m−1K−2for the most drawn fiber 14 d after its fabrication. A proof‐of‐concept two‐couple thermoelectric textile is crafted by embroidering bundles of n‐type PBDF fibers and p‐type PEDOT:PSS fibers. The device generates 2.40 nW at a 22 °C temperature gradient. This work represents the initial steps and a crucial advancement toward fabricating high‐performance n‐type polymer fibers that can complement their p‐type counterparts to close the existing performance gap.

     
    more » « less
  3. null (Ed.)
    Ionic liquid based fiber welding has been used to attach the metal−organic framework (MOF) UiO-66-NH2to cotton fibers. The results show that by controlling the extent of the welding process, it is possible to produce fibers that contain a high surface area (approximately 50−100 m2/ g), an X-ray diffraction pattern consistent with UiO-66-NH2, and fibers that are chemically reactive to dimethyl 4-nitrophenyl phosphate (DMNP), a common chemical weapon simulant. The ionic liquid/MOF welding solution can be applied by directly placing the fabric in the welding solution or by utilizing an airbrushing technique. Both welding techniques are shown to be scalable with results collected on approximately 1×1, 5 ×5, and 15.5×15.5 in. swatches. The results are also applicable to weaving methods where the MOF is welded to individual threads and subsequently woven into a textile. The results provide an industrially scalable method of attaching a wide variety of MOFs to cotton textiles, which does not require synthesizing the MOF in the presence of the textile. 
    more » « less
  4. Computing light reflection from rough surfaces is an important topic in computer graphics. Reflection models developed based on geometric optics fail to capture wave effects such as diffraction and interference, while existing models based on physical optics approximations give erroneous predictions under many circumstances (e.g. when multiple scattering from the surface cannot be ignored). We present a scalable 3D full-wave simulator for computing reference solutions to surface scattering problems, which can be used to evaluate and guide the development of approximate models for rendering. We investigate the range of validity for some existing wave optics based reflection models; our results confirm these models for low-roughness surfaces but also show that prior rendering methods do not accurately predict the scattering behavior of some types of surfaces.

    Our simulator is based on the boundary element method (BEM) and accelerated using the adaptive integral method (AIM), and is implemented to execute on modern GPUs. We demonstrate the simulator on domains up to 60 × 60 × 10 wavelengths, involving surface samples with significant height variations. Furthermore, we propose a new system for efficiently computing BRDF values for large numbers of incident and outgoing directions at once, by combining small simulations to characterize larger areas. Our simulator will be released as an open-source toolkit for computing surface scattering.

     
    more » « less
  5. We describe the optimum telescope focal ratio for a two-element, three-surface, telecentric image-transfer microlens-to-fiber coupled integral field unit within the constraints imposed by microoptics fabrication and optical aberrations. We create a generalized analytical description of the microoptics optical parameters from first principles. We find that the optical performance, including all aberrations, of a design constrained by an analytic model considering only spherical aberration and diffraction matches within ± 4 % of a design optimized by ray-tracing software such as Zemax. The analytical model does not require any compromise on the available clear aperture; about 90% mechanical aperture of hexagonal microlens is available for light collection. The optimum telescope f-ratio for a 200-μm core fiber-fed at f / 3.5 is between f / 7 and f / 12. We find the optimum telescope focal ratio changes as a function of fiber core diameter and fiber input beam speed. A telescope focal ratio of f / 8 would support the largest range of fiber diameters (100 to 500 μm) and fiber injection speeds (between f / 3 and f / 5). The optimization of the telescope and lenslet-coupled fibers is relevant for the design of high-efficiency dedicated survey telescopes, and for retrofitting existing facilities via introducing focal macro-optics to match the instrument input requirements. 
    more » « less