skip to main content


This content will become publicly available on August 1, 2024

Title: A Full-Wave Reference Simulator for Computing Surface Reflectance

Computing light reflection from rough surfaces is an important topic in computer graphics. Reflection models developed based on geometric optics fail to capture wave effects such as diffraction and interference, while existing models based on physical optics approximations give erroneous predictions under many circumstances (e.g. when multiple scattering from the surface cannot be ignored). We present a scalable 3D full-wave simulator for computing reference solutions to surface scattering problems, which can be used to evaluate and guide the development of approximate models for rendering. We investigate the range of validity for some existing wave optics based reflection models; our results confirm these models for low-roughness surfaces but also show that prior rendering methods do not accurately predict the scattering behavior of some types of surfaces.

Our simulator is based on the boundary element method (BEM) and accelerated using the adaptive integral method (AIM), and is implemented to execute on modern GPUs. We demonstrate the simulator on domains up to 60 × 60 × 10 wavelengths, involving surface samples with significant height variations. Furthermore, we propose a new system for efficiently computing BRDF values for large numbers of incident and outgoing directions at once, by combining small simulations to characterize larger areas. Our simulator will be released as an open-source toolkit for computing surface scattering.

 
more » « less
Award ID(s):
1909467 1704540
NSF-PAR ID:
10479815
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
42
Issue:
4
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Traditional fiber scattering models, based on ray optics, are missing some important visual aspects of fiber appearance. Previous work [Xia et al. 2020] on wave scattering from ideal extrusions demonstrated that diffraction produces strong forward scattering and colorful effects that are missing from ray-based models. However, that work was unable to include some important surface characteristics such as surface roughness and tilted cuticle scales, which are known to be important for fiber appearance. In this work, we take an important step to study wave effects from rough fibers with arbitrary 3D microgeometry. While the full-wave simulation of realistic 3D fibers remains intractable, we developed a 3D wave optics simulator based on a physical optics approximation, using a GPU-based hierarchical algorithm to greatly accelerate the calculation. It simulates surface reflection and diffractive scattering, which are present in all fibers and typically dominate for darkly pigmented fibers. The simulation provides a detailed picture of first order scattering, but it is not practical to use for production rendering as this would require tabulation per fiber geometry. To practically handle geometry variations in the scene, we propose a model based on wavelet noise, capturing the important statistical features in the simulation results that are relevant for rendering. Both our simulation and practical model show similar granular patterns to those observed in optical measurement. Our compact noise model can be easily combined with existing scattering models to render hair and fur of various colors, introducing visually important colorful glints that were missing from all previous models.

     
    more » « less
  2. Existing fiber scattering models in rendering are all based on tracing rays through fiber geometry, but for small fibers diffraction and interference are non-negligible, so relying on ray optics can result in appearance errors. This paper presents the first wave optics based fiber scattering model, introducing an azimuthal scattering function that comes from a full wave simulation. Solving Maxwell's equations for a straight fiber of constant cross section illuminated by a plane wave reduces to solving for a 3D electromagnetic field in a 2D domain, and our fiber scattering simulator solves this 2.5D problem efficiently using the boundary element method (BEM). From the resulting fields we compute extinction, absorption, and far-field scattering distributions, which we use to simulate shadowing and scattering by fibers in a path tracer. We validate our path tracer against the wave simulation and the simulation against a measurement of diffraction from a single textile fiber. Our results show that our approach can reproduce a wide range of fibers with different sizes, cross sections, and material properties, including textile fibers, animal fur, and human hair. The renderings include color effects, softening of sharp features, and strong forward scattering that are not predicted by traditional ray-based models, though the two approaches produce similar appearance for complex fiber assemblies under many conditions. 
    more » « less
  3. Inverse rendering is a powerful approach to modeling objects from photographs, and we extend previous techniques to handle translucent materials that exhibit subsurface scattering. Representing translucency using a heterogeneous bidirectional scattering-surface reflectance distribution function (BSSRDF), we extend the framework of path-space differentiable rendering to accommodate both surface and subsurface reflection. This introduces new types of paths requiring new methods for sampling moving discontinuities in material space that arise from visibility and moving geometry. We use this differentiable rendering method in an end-to-end approach that jointly recovers heterogeneous translucent materials (represented by a BSSRDF) and detailed geometry of an object (represented by a mesh) from a sparse set of measured 2D images in a coarse-to-fine framework incorporating Laplacian preconditioning for the geometry. To efficiently optimize our models in the presence of the Monte Carlo noise introduced by the BSSRDF integral, we introduce a dual-buffer method for evaluating the L2 image loss. This efficiently avoids potential bias in gradient estimation due to the correlation of estimates for image pixels and their derivatives and enables correct convergence of the optimizer even when using low sample counts in the renderer. We validate our derivatives by comparing against finite differences and demonstrate the effectiveness of our technique by comparing inverse-rendering performance with previous methods. We show superior reconstruction quality on a set of synthetic and real-world translucent objects as compared to previous methods that model only surface reflection. 
    more » « less
  4. Abstract

    To increase diversity and realism, surface bidirectional scattering distribution functions (BSDFs) are often modelled as consisting of multiple layers, but accurately evaluating layered BSDFs while accounting for all light transport paths is a challenging problem. Recently, Guoet al. [GHZ18] proposed an accurate and general position‐free Monte Carlo method, but this method introduces variance that leads to longer render time compared to non‐stochastic layered models. We improve the previous work by presenting two new sampling strategies,pair‐product samplingandmultiple‐product sampling. Our new methods better take advantage of the layered structure and reduce variance compared to the conventional approach of sequentially sampling one BSDF at a time. Ourpair‐product samplingstrategy importance samples the product of two BSDFs from a pair of adjacent layers. We further generalize this tomultiple‐product sampling, which importance samples the product of a chain of three or more BSDFs. In order to compute these products, we developed a new approximate Gaussian representation of individual layer BSDFs. This representation incorporates spatially varying material properties as parameters so that our techniques can support an arbitrary number of textured layers. Compared to previous Monte Carlo layering approaches, our results demonstrate substantial variance reduction in rendering isotropic layered surfaces.

     
    more » « less
  5. null (Ed.)
    This paper provides an analysis of radio wave scattering for frequencies ranging from the microwave to the Terahertz band (e.g., 1 GHz - 1 THz), by studying the scattering power reradiated from various types of materials with different surface roughnesses. First, fundamentals of scattering and reflection are developed and explained for use in wireless mobile radio, and the effect of scattering on the reflection coefficient for rough surfaces is investigated. Received power is derived using two popular scattering models - the directive scattering (DS) model and the radar cross section (RCS) model through simulations over a wide range of frequencies, materials, and orientations for the two models, and measurements confirm the accuracy of the DS model at 140 GHz. This paper shows that scattering can become a prominent propagation mechanism as frequencies extend to millimeter-wave (mmWave) and beyond, but at other times can be treated like simple reflection. Knowledge of scattering effects is critical for appropriate and realistic channel models, which further support the development of massive multiple input-multiple output (MIMO) techniques, localization, ray tracing tool design, and imaging for future 5G and 6G wireless systems. 
    more » « less