skip to main content

Title: A wave optics based fiber scattering model
Existing fiber scattering models in rendering are all based on tracing rays through fiber geometry, but for small fibers diffraction and interference are non-negligible, so relying on ray optics can result in appearance errors. This paper presents the first wave optics based fiber scattering model, introducing an azimuthal scattering function that comes from a full wave simulation. Solving Maxwell's equations for a straight fiber of constant cross section illuminated by a plane wave reduces to solving for a 3D electromagnetic field in a 2D domain, and our fiber scattering simulator solves this 2.5D problem efficiently using the boundary element method (BEM). From the resulting fields we compute extinction, absorption, and far-field scattering distributions, which we use to simulate shadowing and scattering by fibers in a path tracer. We validate our path tracer against the wave simulation and the simulation against a measurement of diffraction from a single textile fiber. Our results show that our approach can reproduce a wide range of fibers with different sizes, cross sections, and material properties, including textile fibers, animal fur, and human hair. The renderings include color effects, softening of sharp features, and strong forward scattering that are not predicted by traditional ray-based models, though more » the two approaches produce similar appearance for complex fiber assemblies under many conditions. « less
 ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
ACM Transactions on Graphics
Page Range or eLocation-ID:
1 to 16
Sponsoring Org:
National Science Foundation
More Like this
  1. Ionic liquid based fiber welding has been used to attach the metal−organic framework (MOF) UiO-66-NH2to cotton fibers. The results show that by controlling the extent of the welding process, it is possible to produce fibers that contain a high surface area (approximately 50−100 m2/ g), an X-ray diffraction pattern consistent with UiO-66-NH2, and fibers that are chemically reactive to dimethyl 4-nitrophenyl phosphate (DMNP), a common chemical weapon simulant. The ionic liquid/MOF welding solution can be applied by directly placing the fabric in the welding solution or by utilizing an airbrushing technique. Both welding techniques are shown to be scalable with results collected on approximately 1×1, 5 ×5, and 15.5×15.5 in. swatches. The results are also applicable to weaving methods where the MOF is welded to individual threads and subsequently woven into a textile. The results provide an industrially scalable method of attaching a wide variety of MOFs to cotton textiles, which does not require synthesizing the MOF in the presence of the textile.
  2. The scattering pattern of a crystal obeys the symmetry of the crystal structure through the corresponding Laue group. This is usually also true for the diffuse scattering, containing information about disorder, but here a case is reported where the diffuse scattering is of lower symmetry than the parent crystal structure. The mineral bixbyite has been studied by X-ray and neutron scattering techniques since 1928 with some of the most recent studies characterizing the low-temperature transition to a magnetically disordered spin-glass state. However, bixbyite also exhibits structural disorder, and here single-crystal X-ray and neutron scattering is used to characterize the different modes of disorder present. One-dimensional rods of diffuse scattering are observed in the cubic mineral bixbyite, which break the expected symmetry of the scattering pattern. It is shown that this scattering arises from epitaxial intergrowths of the related mineral, braunite. The presence of this disorder mode is found to be directly observable as well-defined residuals in the average structure refined against the Bragg diffraction. An additional three-dimensional diffuse scattering component is observed in neutron scattering data, which is shown to originate from the substitutional disorder on the Fe/Mn sites. This occupational disorder gives rise to local relaxations of the oxidemore »sublattice, and the pattern of oxide displacements can be rationalized based on crystal-field theory. The combined use of neutron and X-ray single-crystal scattering techniques highlights their great complementarity. In particular, the large sample requirements for neutron scattering experiments prove to be an obstacle in solving the intergrowth disorder due to several growth orientations, whereas for X-ray scattering the one-dimensional nature of the intergrowth disorder renders solving this a more tractable task. On the other hand, the oxide relaxations cannot be resolved using X-rays due to the low Mn/Fe contrast. By combining the two approaches both types of disorder have been characterized.« less
  3. The practice of serial X-ray crystallography (SX) depends on efficient, continuous delivery of hydrated protein crystals while minimizing background scattering. Of the two major types of sample delivery devices, fixed-target devices offer several advantages over widely adopted jet injectors, including: lower sample consumption, clog-free delivery, and the ability to control on-chip crystal density to improve hit rates. Here we present our development of versatile, inexpensive, and robust polymer microfluidic chips for routine and reliable room temperature serial measurements at both synchrotrons and X-ray free electron lasers (XFELs). Our design includes highly X-ray-transparent enclosing thin film layers tuned to minimize scatter background, adaptable sample flow layers tuned to match crystal size, and a large sample area compatible with both raster scanning and rotation based serial data collection. The optically transparent chips can be used both for in situ protein crystallization (to eliminate crystal handling) or crystal slurry loading, with prepared samples stable for weeks in a humidified environment and for several hours in ambient conditions. Serial oscillation crystallography, using a multi-crystal rotational data collection approach, at a microfocus synchrotron beamline (SSRL, beamline 12-1) was used to benchmark the performance of the chips. High-resolution structures (1.3–2.7 Å) were collected from five differentmore »proteins – hen egg white lysozyme, thaumatin, bovine liver catalase, concanavalin-A (type VI), and SARS-CoV-2 nonstructural protein NSP5. Overall, our modular fabrication approach enables precise control over the cross-section of materials in the X-ray beam path and facilitates chip adaption to different sample and beamline requirements for user-friendly, straightforward diffraction measurements at room temperature.« less
  4. Recently, graphene fibers derived from wet-spinning of graphene oxide (GO) dispersions have emerged as viable electrodes for fiber-shaped supercapacitors (FSCs) and/or batteries, wherein large surface area, high electrical conductivity, and sufficient mechanical strength/toughness are desired. However, for most fiber electrodes reported so far, compromises have to be made between energy-storage capacity and mechanical/electrical performance, whereas a graphene fiber with high capacity and sufficient toughness for direct machine weaving or knitting is yet to be developed. Inspired by the alum mordant used for natural dyes in the traditional textile dyeing industry, our research group has synthesized wet-spun GO fibers and coagulated them with different multivalent cations ( e.g. Ca 2+ , Fe 3+ , and Al 3+ ), where dramatically different fiber morphologies and properties have been observed. The first principles density functional theory has been further employed to explain the observed disparities via cation–GO binding energy calculation. When assembled into solid-state FSCs, Al 3+ -based reduced GO (rGO) fibers offer excellent stability against bending, and a specific capacitance of 148.5 mF cm −2 at 40 mV s −1 , 1.4, 4.8, and 6.8 times higher than that of the rGO fibers based on other three coagulation systems (Fe 3+ ,more »Ca 2+ and acetic acid), respectively. The volumetric energy density of the Al 3+ -based FSC is up to 13.26 mW h cm −3 , while a high power density of 250.87 mW cm −3 is maintained.« less
  5. Light scattering in participating media and translucent materials is typically modeled using the radiative transfer theory. Under the assumption of independent scattering between particles, it utilizes several bulk scattering parameters to statistically characterize light-matter interactions at the macroscale. To calculate these parameters based on microscale material properties, the Lorenz-Mie theory has been considered the gold standard. In this paper, we present a generalized framework capable of systematically and rigorously computing bulk scattering parameters beyond the far-field assumption of Lorenz-Mie theory. Our technique accounts for microscale wave-optics effects such as diffraction and interference as well as interactions between nearby particles. Our framework is general, can be plugged in any renderer supporting Lorenz-Mie scattering, and allows arbitrary packing rates and particles correlation; we demonstrate this generality by computing bulk scattering parameters for a wide range of materials, including anisotropic and correlated media.