Function-as-a-Service (FaaS) is becoming an increasingly popular cloud-deployment paradigm for serverless computing that frees application developers from managing the infrastructure. At the same time, it allows cloud providers to assert control in workload consolidation, i.e., co-locating multiple containers on the same server, thereby achieving higher server utilization, often at the cost of higher end-to-end function request latency. Interestingly, a key aspect of serverless latency management has not been well studied: the trade-off between application developers' latency goals and the FaaS providers' utilization goals. This paper presents a multi-faceted, measurement-driven study of latency variation in serverless platforms that elucidates this trade-off space. We obtained production measurements by executing FaaS benchmarks on IBM Cloud and a private cloud to study the impact of workload consolidation, queuing delay, and cold starts on the end-to-end function request latency. We draw several conclusions from the characterization results. For example, increasing a container's allocated memory limit from 128 MB to 256 MB reduces the tail latency by 2× but has 1.75× higher power consumption and 59% lower CPU utilization.
more »
« less
ServerMore: Opportunistic Execution of Serverless Functions in the Cloud
Serverless computing allows customers to submit their jobs to the cloud for execution, with the resource provisioning being taken care of by the cloud provider. Serverless functions are often short-lived and have modest resource requirements, thereby presenting an opportunity to improve server utilization by colocating with latency-sensitive customer workloads. This paper presents ServerMore, a server-level resource manager that opportunistically colocates customer serverless jobs with serverful customer VMs. ServerMore dynamically regulates the CPU, memory bandwidth, and LLC resources on the server to ensure that the colocation between serverful and serverless workloads does not impact application tail latencies. By selectively admitting serverless functions and inferring the performance of black-box serverful workloads, ServerMore improves resource utilization on average by 35.9% to 245% compared to prior works; while having a minimal impact on the latency of both serverful applications and serverless functions.
more »
« less
- PAR ID:
- 10330224
- Date Published:
- Journal Name:
- Proceedings of the ACM Symposium on Cloud Computing
- Page Range / eLocation ID:
- 570 to 584
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Serverless computing is an emerging paradigm in which an application's resource provisioning and scaling are managed by third-party services. Examples include AWS Lambda, Azure Functions, and Google Cloud Functions. Behind these services' easy-to-use APIs are opaque, complex infrastructure and management ecosystems. Taking on the viewpoint of a serverless customer, we conduct the largest measurement study to date, launching more than 50,000 function instances across these three services, in order to characterize their architectures, performance, and resource management efficiency. We explain how the platforms isolate the functions of different accounts, using either virtual machines or containers, which has important security implications. We characterize performance in terms of scalability, coldstart latency, and resource efficiency, with highlights including that AWS Lambda adopts a bin-packing-like strategy to maximize VM memory utilization, that severe contention between functions can arise in AWS and Azure, and that Google had bugs that allow customers to use resources for free.more » « less
-
Serverless computing has been favored by users and infrastructure providers from various industries, including online services and scientific computing. Users enjoy its auto-scaling and ease-of-management, and providers own more control to optimize their service. However, existing serverless platforms still require users to pre-define resource allocations for their functions, leading to frequent misconfiguration by inexperienced users in practice. Besides, functions' varying input data further escalate the gap between their dynamic resource demands and static allocations, leaving functions either over-provisioned or under-provisioned. This paper presents Libra, a safe and timely resource harvesting framework for multi-node serverless clusters. Libra makes precise harvesting decisions to accelerate function invocations with harvested resources and jointly improve resource utilization by profiling dynamic resource demands and availability proactively. Experiments on OpenWhisk clusters with real-world workloads show that Libra reduces response latency by 39% and achieves 3X resource utilization compared to state-of-the-art solutions.more » « less
-
Gibbons, P; Pekhimenko, G; De_Sa, C (Ed.)Federated Learning (FL) typically involves a large-scale, distributed system with individual user devices/servers training models locally and then aggregating their model updates on a trusted central server. Existing systems for FL often use an always-on server for model aggregation, which can be inefficient in terms of resource utilization. They also may be inelastic in their resource management. This is particularly exacerbated when aggregating model updates at scale in a highly dynamic environment with varying numbers of heterogeneous user devices/servers. We present LIFL, a lightweight and elastic serverless cloud platform with fine-grained resource management for efficient FL aggregation at scale. LIFL is enhanced by a streamlined, event-driven serverless design that eliminates the individual, heavyweight message broker and replaces inefficient container-based sidecars with lightweight eBPF-based proxies. We leverage shared memory processing to achieve high-performance communication for hierarchical aggregation, which is commonly adopted to speed up FL aggregation at scale. We further introduce the locality-aware placement in LIFL to maximize the benefits of shared memory processing. LIFL precisely scales and carefully reuses the resources for hierarchical aggregation to achieve the highest degree of parallelism, while minimizing aggregation time and resource consumption. Our preliminary experimental results show that LIFL achieves significant improvement in resource efficiency and aggregation speed for supporting FL at scale, compared to existing serverful and serverless FL systems.more » « less
-
Federated Learning (FL) typically involves a large-scale, distributed system with individual user devices/servers training models locally and then aggregating their model updates on a trusted central server. Existing systems for FL often use an always-on server for model aggregation, which can be inefficient in terms of resource utilization. They also may be inelastic in their resource management. This is particularly exacerbated when aggregating model updates at scale in a highly dynamic environment with varying numbers of heterogeneous user devices/servers. We present LIFL, a lightweight and elastic serverless cloud platform with fine-grained resource management for efficient FL aggregation at scale. LIFL is enhanced by a streamlined, event-driven serverless design that eliminates the individual, heavyweight message broker and replaces inefficient container-based sidecars with lightweight eBPF-based proxies. We leverage shared memory processing to achieve high-performance communication for hierarchical aggregation, which is commonly adopted to speed up FL aggregation at scale. We further introduce the locality-aware placement in LIFL to maximize the benefits of shared memory processing. LIFL precisely scales and carefully reuses the resources for hierarchical aggregation to achieve the highest degree of parallelism, while minimizing aggregation time and resource consumption. Our preliminary experimental results show that LIFL achieves significant improvement in resource efficiency and aggregation speed for supporting FL at scale, compared to existing serverful and serverless FL systems.more » « less
An official website of the United States government

