skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lagrangian diffusion properties of a free shear turbulent jet
A Lagrangian experimental study of an axisymmetric turbulent water jet is performed to investigate the highly anisotropic and inhomogeneous flow field. Measurements are conducted within a Lagrangian exploration module, an icosahedron apparatus, to facilitate optical access of three cameras. Stereoscopic particle tracking velocimetry results in three-component tracks of position, velocity and acceleration of the tracer particles within the vertically oriented jet with a Taylor-based Reynolds number $${\textit {Re}}_\lambda \simeq 230$$ . Analysis is performed at seven locations from 15 diameters up to 45 diameters downstream. Eulerian analysis is first carried out to obtain critical parameters of the jet and relevant scales, namely the Kolmogorov and large (integral) scales as well as the energy dissipation rate. Lagrangian statistical analysis is then performed on velocity components stationarised following methods inspired by Batchelor ( J. Fluid Mech. , vol. 3, 1957, pp. 67–80), which aim to extend stationary Lagrangian theory of turbulent diffusion by Taylor to the case of self-similar flows. The evolution of typical Lagrangian scaling parameters as a function of the developing jet is explored and results show validation of the proposed stationarisation. The universal scaling constant $$C_0$$ (for the Lagrangian second-order structure function), as well as Eulerian and Lagrangian integral time scales, are discussed in this context. Constant $$C_0$$ is found to converge to a constant value (of the order of $$C_0 = 3$$ ) within 30 diameters downstream of the nozzle. Finally, the occurrence of finite particle size effects is investigated through consideration of acceleration-dependent quantities.  more » « less
Award ID(s):
1756267
PAR ID:
10330229
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
918
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Particle energization due to magnetic reconnection is an important unsolved problem for myriad space and astrophysical plasmas. Electron energization in magnetic reconnection has traditionally been examined from a particle, or Lagrangian, perspective using particle-in-cell (PIC) simulations. Guiding-center analyses of ensembles of PIC particles have suggested that Fermi (curvature drift) acceleration and direct acceleration via the reconnection electric field are the primary electron energization mechanisms. However, both PIC guiding-center ensemble analyses and spacecraft observations are performed in an Eulerian perspective. For this work, we employ the continuum Vlasov–Maxwell solver within the Gkeyll simulation framework to reexamine electron energization from a kinetic continuum, Eulerian, perspective. We separately examine the contribution of each drift energization component to determine the dominant electron energization mechanisms in a moderate guide-field Gkeyll reconnection simulation. In the Eulerian perspective, we find that the diamagnetic and agyrotropic drifts are the primary electron energization mechanisms away from the reconnection x-point, where direct acceleration dominates. We compare the Eulerian (Vlasov Gkeyll) results with the wisdom gained from Lagrangian (PIC) analyses. 
    more » « less
  2. We report an investigation into random-jet-stirred homogeneous turbulence generated in a vertical octagonal prism-shaped tank where there are jet arrays on four of the eight vertical faces. We show that the turbulence is homogeneous at all scales in the central region of the tank that span multiple integral scales in all directions. The jet forcing from four sides in the horizontal direction guarantees isotropy in horizontal planes but leads to more energy in the horizontal fluctuations com- pared with the vertical fluctuations. This anisotropy between the horizontal and vertical fluctuations decreases at smaller scales, so that the inertial and dissipation range statistics show isotropic behavior. Using four jet arrays allows us to achieve higher turbulence intensity and Reynolds number with a shorter jet merging distance compared to previous facilities with two-facing arrays. By changing the array-to-array distance, the parameters of the algorithm that drives random-jet stirring, and attachments to the exits of each jet, we show that we are able to vary the turbulence scales and Reynolds number. We provide scaling relations for the turbulent fluctuation velocity, integral scale, and dissipation rate, and we show how these scales of motion are primarily determined by the properties of individual jets and the diffusion of their momentum with distance from the nozzles. Finally, we examine the signatures of individual jets in the turbulent velocity spectra and report the conditions under which individual jet flows, not fully mixed with the background turbulence, produce a spectral peak and the corresponding frequency associated with the jet forcing timescale. 
    more » « less
  3. Abstract. Phytoplankton form the base of marine food webs and playan important role in carbon cycling, making it important to quantify ratesof biomass accumulation and loss. As phytoplankton drift with oceancurrents, rates should be evaluated in a Lagrangian as opposed to an Eulerianframework. In this study, we quantify the Lagrangian (from Bio-Argo floatsand surface drifters with satellite ocean colour) and Eulerian (fromsatellite ocean colour and altimetry) statistics of mesoscale chlorophylland velocity by computing decorrelation time and length scales and relatethe frames by scaling the material derivative of chlorophyll. Because floatsprofile vertically and are not perfect Lagrangian observers, we quantify themean distance between float and surface geostrophic trajectories over thetime spanned by three consecutive profiles (quasi-planktonic index, QPI) toassess how their sampling is a function of their deviations from surfacemotion. Lagrangian and Eulerian statistics of chlorophyll are sensitive to thefiltering used to compute anomalies. Chlorophyll anomalies about a 31 dtime filter reveal an approximate equivalence of Lagrangian and Euleriantendencies, suggesting they are driven by ocean colour pixel-scale processesand sources or sinks. On the other hand, chlorophyll anomalies about aseasonal cycle have Eulerian scales similar to those of velocity, suggestingmesoscale stirring helps set distributions of biological properties, andratios of Lagrangian to Eulerian timescales depend on the magnitude ofvelocity fluctuations relative to an evolution speed of the chlorophyllfields in a manner similar to earlier theoretical results for velocityscales. The results suggest that stirring by eddies largely sets Lagrangiantime and length scales of chlorophyll anomalies at the mesoscale. 
    more » « less
  4. null (Ed.)
    Dimensional analysis suggests that the dissipation length scale ( $$\ell _{{\it\epsilon}}=u_{\star }^{3}/{\it\epsilon}$$ ) is the appropriate scale for the shear-production range of the second-order streamwise structure function in neutrally stratified turbulent shear flows near solid boundaries, including smooth- and rough-wall boundary layers and shear layers above canopies (e.g. crops, forests and cities). These flows have two major characteristics in common: (i) a single velocity scale, i.e. the friction velocity ( $$u_{\star }$$ ) and (ii) the presence of large eddies that scale with an external length scale much larger than the local integral length scale. No assumptions are made about the local integral scale, which is shown to be proportional to $$\ell _{{\it\epsilon}}$$ for the scaling analysis to be consistent with Kolmogorov’s result for the inertial subrange. Here $${\it\epsilon}$$ is the rate of dissipation of turbulent kinetic energy (TKE) that represents the rate of energy cascade in the inertial subrange. The scaling yields a log-law dependence of the second-order streamwise structure function on ( $$r/\ell _{{\it\epsilon}}$$ ), where $$r$$ is the streamwise spatial separation. This scaling law is confirmed by large-eddy simulation (LES) results in the roughness sublayer above a model canopy, where the imbalance between local production and dissipation of TKE is much greater than in the inertial layer of wall turbulence and the local integral scale is affected by two external length scales. Parameters estimated for the log-law dependence on ( $$r/\ell _{{\it\epsilon}}$$ ) are in reasonable agreement with those reported for the inertial layer of wall turbulence. This leads to two important conclusions. Firstly, the validity of the $$\ell _{{\it\epsilon}}$$ -scaling is extended to shear flows with a much greater imbalance between production and dissipation, indicating possible universality of the shear-production range in flows near solid boundaries. Secondly, from a modelling perspective, $$\ell _{{\it\epsilon}}$$ is the appropriate scale to characterize turbulence in shear flows with multiple externally imposed length scales. 
    more » « less
  5. We apply Lagrangian particle tracking to the two-dimensional single-mode Rayleigh–Taylor (RT) instability to study the dynamical evolution of fluid interface. At the onset of the nonlinear RT stage, we select three ensembles of tracer particles located at the bubble tip, at the spike tip, and inside the spiral of the mushroom structure, which cover most of the interfacial region as the instability develops. Conditional statistics performed on the three sets of particles and over different RT evolution stages, such as the trajectory curvature, velocity, and acceleration, reveals the temporal and spatial flow patterns characterizing the single-mode RT growth. The probability density functions of tracer particle velocity and trajectory curvature exhibit scalings compatible with local flow topology, such as the swirling motion of the spiral particles. Large-scale anisotropy of RT interfacial flows, measured by the ratio of horizontal to vertical kinetic energy, also varies for different particle ensembles arising from the differing evolution patterns of the particle acceleration. In addition, we provide direct evidence to connect the RT bubble re-acceleration to its interaction with the transported fluid from the spike side, due to the shear driven Kelvin–Helmholtz instability. Furthermore, we reveal that the secondary RT instability inside the spiral, which destabilizes the spiraling motion and induces complex flow structures, is generated by the centrifugal acceleration. 
    more » « less