skip to main content


Title: Walking and Teleportation in Wide-area Virtual Reality Experiences
Location-based or Out-of-Home Entertainment refers to experiences such as theme and amusement parks, laser tag and paintball arenas, roller and ice skating rinks, zoos and aquariums, or science centers and museums among many other family entertainment and cultural venues. More recently, location-based VR has emerged as a new category of out-of-home entertainment. These VR experiences can be likened to social entertainment options such as laser tag, where physical movement is an inherent part of the experience versus at-home VR experiences where physical movement often needs to be replaced by artificial locomotion techniques due to tracking space constraints. In this work, we present the first VR study to understand the impact of natural walking in a large physical space on presence and user preference. We compare it with teleportation in the same large space, since teleportation is the most commonly used locomotion technique for consumer, at-home VR. Our results show that walking was overwhelmingly preferred by the participants and teleportation leads to significantly higher self-reported simulator sickness. The data also shows a trend towards higher self-reported presence for natural walking.  more » « less
Award ID(s):
1911230
NSF-PAR ID:
10330669
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Symposium on Mixed and Augmented Reality
Volume:
2020
ISSN:
2473-0726
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Teleportation is a widely used virtual locomotion technique that allows users to navigate beyond the confines of available tracking space with a low possibility of inducing VR sickness. Because teleportation requires little physical effort and lets users traverse large distances instantly, a risk is that over time users might only use teleportation and abandon walking input. This paper provides insight into this risk by presenting results from a study that analyzes tracking space usage of three popular commercially available VR games that rely on teleportation. Our study confirms that positional tracking usage is limited by the use of teleportation. 
    more » « less
  2. null (Ed.)
    We study student experiences of social VR for remote instruction, with students attending class from home. The study evaluates student experiences when: (1) viewing remote lectures with VR headsets, (2) viewing with desktop displays, (3) presenting with VR headsets, and (4) reflecting on several weeks of VR-based class attendance. Students rated factors such as presence, social presence, simulator sickness, communication methods, avatar and application features, and tradeoffs with other remote approaches. Headset-based viewing and presenting produced higher presence than desktop viewing, but had less-clear impact on overall experience and on most social presence measures. We observed higher attentional allocation scores for headset-based presenting than for both viewing methods. For headset VR, there were strong negative correlations between simulator sickness (primarily reported as general discomfort) and ratings of co-presence, overall experience, and some other factors. This suggests that comfortable users experienced substantial benefits of headset viewing and presenting, but others did not. Based on the type of virtual environment, student ratings, and comments, reported discomfort appears related to physical ergonomic factors or technical problems. Desktop VR appears to be a good alternative for uncomfortable students, and students report that they prefer a mix of headset and desktop viewing. We additionally provide insight from students and a teacher about possible improvements for VR class technology, and we summarize student opinions comparing viewing and presenting in VR to other remote class technologies. 
    more » « less
  3. Consumer level virtual experiences almost always occur when physical space is limited, either by the constraints of an indoor space or of a tracked area. This observation coupled with the need for movement through large virtual spaces has resulted in a proliferation of research into locomotion interfaces that decouples movement through the virtual environment from movement in the real world. While many locomotion interfaces support movement of some kind in the real world, some do not. This paper examines the effect of the amount of physical space used in the real world on one popular locomotion interface, resetting, when compared to a locomotion interface that requires minimal physical space, walking in place. The metric used to compare the two locomotion interfaces was navigation performance, specifically, the acquisition of survey knowledge. We find that, while there are trade-offs between the two methods, walking in place is preferable in small spaces. 
    more » « less
  4. null (Ed.)
    Third-person is a popular perspective for video games, but virtual reality (VR) seems to be primarily experienced from a first-person point of view (POV). While a first-person POV generally offers the highest presence; a third-person POV allows users to see their avatar; which allows for a better bond, and the higher vantage point generally increases spatial awareness and navigation. Third-person locomotion is generally implemented using a controller or keyboard, with users often sitting down; an approach that is considered to offer a low presence and embodiment. We present a novel thirdperson locomotion method that enables a high avatar embodiment by integrating skeletal tracking with head-tilt based input to enable omnidirectional navigation beyond the confines of available tracking space. By interpreting movement relative to an avatar, the user will always keep facing the camera which optimizes skeletal tracking and keeps required instrumentation minimal (1 depth camera). A user study compares the performance, usability, VR sickness incidence and avatar embodiment of our method to using a controller for a navigation task that involves interacting with objects. Though a controller offers a higher performance and usability, our locomotion method offered a significantly higher avatar embodiment. 
    more » « less
  5. Virtual environments (VEs) can be infinitely large, but movement of the virtual reality (VR) user is constrained by the surrounding real environment. Teleporting has become a popular locomotion interface to allow complete exploration of the VE. To teleport, the user selects the intended position (and sometimes orientation) before being instantly transported to that location. However, locomotion interfaces such as teleporting can cause disorientation. This experiment explored whether practice and feedback when using the teleporting interface can reduce disorientation. VR headset owners participated remotely. On each trial of a triangle completion task, the participant traveled along two path legs through a VE before attempting to point to the path origin. Travel was completed with one of two teleporting interfaces that differed in the availability of rotational self-motion cues. Participants in the feedback condition received feedback about their pointing accuracy. For both teleporting interfaces tested, feedback caused significant improvement in pointing performance, and practice alone caused only marginal improvement. These results suggest that disorientation in VR can be reduced through feedback-based training. 
    more » « less