skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: COLDz: Deep 34 GHz Continuum Observations and Free–Free Emission in High-redshift Star-forming Galaxies
Abstract The high-frequency radio sky has historically remained largely unexplored due to the typical faintness of sources in this regime, and the modest survey speed compared to observations at lower frequencies. However, high-frequency radio surveys offer an invaluable tracer of high-redshift star formation, as they directly target the faint radio free–free emission. We present deep continuum observations at 34 GHz in the COSMOS and GOODS-North fields from the Karl G. Jansky Very Large Array (VLA), as part of the COLD z survey. The deep COSMOS mosaic spans down to σ = 1.3 μ Jy beam −1 , while the wider GOODS-N observations cover to σ = 5.3 μ Jy beam −1 . We detect a total of 18 galaxies at 34 GHz, of which nine show radio emission consistent with being powered by star formation; although for two sources, this is likely due to thermal emission from dust. Utilizing deep ancillary radio data at 1.4, 3, 5, and 10 GHz, we decompose the spectra of the remaining seven star-forming galaxies into their synchrotron and thermal free–free components, and find typical thermal fractions and synchrotron spectral indices comparable to those observed in local star-forming galaxies. We further determine free–free star formation rates (SFRs), and show that these are in agreement with SFRs from spectral energy distribution-fitting and the far-infrared/radio correlation. Our observations place strong constraints on the high-frequency radio emission in typical galaxies at high redshift, and provide some of the first insights into what is set to become a key area of study with future radio facilities, such as the Square Kilometer Array Phase 1 and next-generation VLA.  more » « less
Award ID(s):
1910107
NSF-PAR ID:
10330881
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
912
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
73
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Radio free–free emission is considered to be one of the most reliable tracers of star formation in galaxies. However, as it constitutes the faintest part of the radio spectrum—being roughly an order of magnitude less luminous than radio synchrotron emission at the GHz frequencies typically targeted in radio surveys—the usage of free–free emission as a star formation rate tracer has mostly remained limited to the local universe. Here, we perform a multifrequency radio stacking analysis using deep Karl G. Jansky Very Large Array observations at 1.4, 3, 5, 10, and 34 GHz in the COSMOS and GOODS-North fields to probe free–free emission in typical galaxies at the peak of cosmic star formation. We find that z ∼ 0.5–3 star-forming galaxies exhibit radio emission at rest-frame frequencies of ∼65–90 GHz that is ∼1.5–2 times fainter than would be expected from a simple combination of free–free and synchrotron emission, as in the prototypical starburst galaxy M82. We interpret this as a deficit in high-frequency synchrotron emission, while the level of free–free emission is as expected from M82. We additionally provide the first constraints on the cosmic star formation history using free–free emission at 0.5 ≲ z ≲ 3, which are in good agreement with more established tracers at high redshift. In the future, deep multifrequency radio surveys will be crucial in order to accurately determine the shape of the radio spectrum of faint star-forming galaxies, and to further establish radio free–free emission as a tracer of high-redshift star formation. 
    more » « less
  2. Abstract

    We report the discoveries of a nuclear ring of diameter 10″ (∼1.5 kpc) and a potential low-luminosity active galactic nucleus (LLAGN) in the radio continuum emission map of the edge-on barred spiral galaxy NGC 5792. These discoveries are based on the Continuum Halos in Nearby Galaxies—an Expanded Very Large Array (VLA) Survey, as well as subsequent VLA observations of subarcsecond resolution. Using a mixture of Hαand 24μm calibrations, we disentangle the thermal and nonthermal radio emission of the nuclear region and derive a star formation rate (SFR) of ∼0.4Myr−1. We find that the nuclear ring is dominated by nonthermal synchrotron emission. The synchrotron-based SFR is about three times the mixture-based SFR. This result indicates that the nuclear ring underwent more intense star-forming activity in the past, and now its star formation is in the low state. The subarcsecond VLA images resolve six individual knots on the nuclear ring. The equipartition magnetic field strengthBeqof the knots varies from 77 to 88μG. The radio ring surrounds a point-like faint radio core ofS6 GHz= (16 ± 4)μJy with polarized lobes at the center of NGC 5792, which suggests an LLAGN with an Eddington ratio of ∼10−5. This radio nuclear ring is reminiscent of the Central Molecular Zone of the Galaxy. Both of them consist of a nuclear ring and LLAGN.

     
    more » « less
  3. Abstract Nuclear rings are excellent laboratories for studying intense star formation. We present results from a study of nuclear star-forming rings in five nearby normal galaxies from the Star Formation in Radio Survey (SFRS) and four local LIRGs from the Great Observatories All-sky LIRG Survey at sub-kiloparsec resolutions using Very Large Array high-frequency radio continuum observations. We find that nuclear ring star formation (NRSF) contributes 49%–60% of the total star formation of the LIRGs, compared to 7%–40% for the normal galaxies. We characterize a total of 57 individual star-forming regions in these rings, and find that with measured sizes of 10–200 pc, NRSF regions in the LIRGs have star formation rate (SFR) and Σ SFR up to 1.7 M ⊙ yr −1 and 402 M ⊙ yr −1 kpc −2 , respectively, which are about 10 times higher than in NRSF regions in the normal galaxies with similar sizes, and comparable to lensed high- z star-forming regions. At ∼100–300 pc scales, we estimate low contributions (<50%) of thermal free–free emission to total radio continuum emission at 33 GHz in the NRSF regions in the LIRGs, but large variations possibly exist at smaller physical scales. Finally, using archival sub-kiloparsec resolution CO ( J = 1–0) data of nuclear rings in the normal galaxies and NGC 7469 (LIRG), we find a large scatter in gas depletion times at similar molecular gas surface densities, which tentatively points to a multimodal star formation relation on sub-kiloparsec scales. 
    more » « less
  4. Abstract We make use of sensitive (9.3 μ Jy beam −1 rms) 1.2 mm continuum observations from the Atacama Large Millimeter/submillimeter Array (ALMA) Spectroscopic Survey in the Hubble Ultra-Deep Field (ASPECS) large program to probe dust-enshrouded star formation from 1362 Lyman-break galaxies spanning the redshift range z  = 1.5–10 (to ∼7–28 M ⊙ yr −1 at 4 σ over the entire range). We find that the fraction of ALMA-detected galaxies in our z  = 1.5–10 samples increases steeply with stellar mass, with the detection fraction rising from 0% at 10 9.0 M ⊙ to % at >10 10 M ⊙ . Moreover, on stacking all 1253 low-mass (<10 9.25 M ⊙ ) galaxies over the ASPECS footprint, we find a mean continuum flux of −0.1 ± 0.4 μ Jy beam −1 , implying a hard upper limit on the obscured star formation rate of <0.6 M ⊙ yr −1 (4 σ ) in a typical low-mass galaxy. The correlation between the infrared excess (IRX) of UV-selected galaxies ( L IR / L UV ) and the UV-continuum slope is also seen in our ASPECS data and shows consistency with a Calzetti-like relation at > and an SMC-like relation at lower masses. Using stellar mass and β measurements for z  ∼ 2 galaxies over the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we derive a new empirical relation between β and stellar mass and then use this correlation to show that our IRX– β and IRX–stellar mass relations are consistent with each other. We then use these constraints to express the IRX as a bivariate function of β and stellar mass. Finally, we present updated estimates of star formation rate density determinations at z  > 3, leveraging present improvements in the measured IRX and recent probes of ultraluminous far-IR galaxies at z  > 2. 
    more » « less
  5. Abstract

    Kiloparsec-scale triple active galactic nuclei (AGNs), potential precursors of gravitationally bound triple massive black holes (MBHs), are rarely seen objects and believed to play an important role in the evolution of MBHs and their host galaxies. In this work we present a multiband (3.0, 6.0, 10.0, and 15.0 GHz), high-resolution radio imaging of the triple AGN candidate, SDSS J0849+1114, using the Very Large Array. Two of the three nuclei (A and C) are detected at 3.0, 6.0, and 15 GHz for the first time, both exhibiting a steep spectrum over 3–15 GHz (with a spectral index −0.90 ± 0.05 and −1.03 ± 0.04) consistent with a synchrotron origin. Nucleus A, the strongest nucleus among the three, shows a double-sided jet, with the jet orientation changing by ∼20° between its inner 1″ and the outer 5.″5 (8.1 kpc) components, which may be explained as the MBH’s angular momentum having been altered by merger-enhanced accretion. Nucleus C also shows a two-sided jet, with the western jet inflating into a radio lobe with an extent of 1.″5 (2.2 kpc). The internal energy of the radio lobe is estimated to be 5.0 × 1055erg, for an equipartition magnetic field strength of ∼160μG. No significant radio emission is detected at all four frequencies for nucleus B, yielding an upper limit of 15, 15, 15, and 18μJy beam−1at 3.0, 6.0, 10.0, and 15.0 GHz, based on which we constrain the star formation rate in nucleus B to be ≲0.4Myr−1.

     
    more » « less