skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Power Flow Method for Power Distribution Systems Based on a Sinusoidal Transformation to a Convex Quadratic Form
The non-linearity and non-convexity of the AC power flow equations may induce convergence problems to the Newton-Raphson (NR) algorithm. Indeed, as shown by Thorp and Naqavi, the NR algorithm may exhibit a fractal behavior. Furthermore, under heavy loading conditions or if some of the line reactances are relatively large compared to the others, the Jacobian matrix becomes ill-conditioned, which may cause the divergence of this algorithm. To address the aforementioned problems for radial power distribution systems, we propose in this paper to apply a sinusoidal transform to map the AC power flow equations into a convex quadratic form, which includes nodebased and Pythagorean equations. The good performance of the proposed approach is demonstrated via simulations carried out on several power distribution systems.  more » « less
Award ID(s):
1917308
PAR ID:
10331066
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE Power & Energy Society General Meeting (PESGM)
Page Range / eLocation ID:
1 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents an algorithm for restoring AC power flow feasibility from solutions to simplified optimal power flow (OPF) problems, including convex relaxations, power flow approximations, and machine learning (ML) models. The proposed algorithm employs a state estimation-based post-processing technique in which voltage phasors, power injections, and line flows from solutions to relaxed, approximated, or ML-based OPF problems are treated similarly to noisy measurements in a state estimation algorithm. The algorithm leverages information from various quantities to obtain feasible voltage phasors and power injections that satisfy the AC power flow equations. Weight and bias parameters are computed offline using an adaptive stochastic gradient descent method. By automatically learning the trustworthiness of various outputs from simplified OPF problems, these parameters inform the online computations of the state estimation-based algorithm to both recover feasible solutions and characterize the performance of power flow approximations, relaxations, and ML models. Furthermore, the proposed algorithm can simultaneously utilize combined solutions from different relaxations, approximations, and ML models to enhance performance. Case studies demonstrate the effectiveness and scalability of the proposed algorithm, with solutions that are both AC power flow feasible and much closer to the true AC OPF solutions than alternative methods, often by several orders of magnitude in the squared two-norm loss function. 
    more » « less
  2. In this work, we consider two-stage quadratic optimization problems under ellipsoidal uncertainty. In the first stage, one needs to decide upon the values of a subset of optimization variables (control variables). In the second stage, the uncertainty is revealed, and the rest of the optimization variables (state variables) are set up as a solution to a known system of possibly nonlinear equations. This type of problem occurs, for instance, in optimization for dynamical systems, such as electric power systems as well as gas and water networks. We propose a convergent iterative algorithm to build a sequence of approximately robustly feasible solutions with an improving objective value. At each iteration, the algorithm optimizes over a subset of the feasible set and uses affine approximations of the second-stage equations while preserving the nonlinearity of other constraints. We implement our approach and demonstrate its performance on Matpower instances of AC optimal power flow. Although this paper focuses on quadratic problems, the approach is suitable for more general setups. 
    more » « less
  3. The computational aspects of power systems have been exploring the steady states of AC power flow for several decades. In this paper, we propose a novel approach to AC power flow calculation using resultants and discriminants for polynomials, which are primarily compiled for quadratic power flow equations. In the case of AC power flow nonlinear systems, it is not possible to determine the number of isolated solutions. However, for polynomial systems, the theorem of Bézout is the primary theorem of algebraic geometry. This study considers a certain multi-homogeneous structure in an algebraic geometry system to demonstrate that the theorem of Bézout is indeed a generalization of the fundamental theorem, among other results. 
    more » « less
  4. Newly, there has been significant research interest in the exact solution of the AC optimal power flow (AC-OPF) problem. A semideflnite relaxation solves many OPF problems globally. However, the real problem exists in which the semidefinite relaxation fails to yield the global solution. The appropriation of relaxation for AC-OPF depends on the success or unfulflllment of the SDP relaxation. This paper demonstrates a quadratic AC-OPF problem with a single negative eigenvalue in objective function subject to linear and conic constraints. The proposed solution method for AC-OPF model covers the classical AC economic dispatch problem that is known to be NP-hard. In this paper, by combining successive linear conic optimization (SLCO), convex relaxation and line search technique, we present a global algorithm for AC-OPF which can locate a globally optimal solution to the underlying AC-OPF within given tolerance of global optimum solution via solving linear conic optimization problems. The proposed algorithm is examined on modified IEEE 6-bus test system. The promising numerical results are described. 
    more » « less
  5. The Optimal Power Shutoff (OPS) problem is an optimization problem that makes power line de-energization decisions in order to reduce the risk of igniting a wildfire, while minimizing the load shed of customers. This problem, with DC linear power flow equations, has been used in many studies in recent years. However, using linear approximations for power flow when making decisions on the network topology is known to cause challenges with AC feasibility of the resulting network, as studied in the related contexts of optimal transmission switching or grid restoration planning. This paper explores the accuracy of the DC OPS formulation and the ability to recover an AC-feasible power flow solution after de-energization decisions are made. We also extend the OPS problem to include variants with the AC, Second-Order-Cone, and Network-Flow power flow equations, and compare them to the DC approximation with respect to solution quality and time. The results highlight that the DC approximation overestimates the amount of load that can be served, leading to poor de-energization decisions. The AC and SOC-based formulations are better, but prohibitively slow to solve for even modestly sized networks thus demonstrating the need for new solution methods with better trade-offs between computational time and solution quality. 
    more » « less