This work concerns a fluorescence optical projection tomography system for low scattering tissue, like lymph nodes, with angular-domain rejection of highly scattered photons. In this regime, filtered backprojection (FBP) image reconstruction has been shown to provide reasonable quality images, yet here a comparison of image quality between images obtained by FBP and iterative image reconstruction with a Monte Carlo generated system matrix, demonstrate measurable improvements with the iterative method. Through simulated and experimental phantoms, iterative algorithms consistently outperformed FBP in terms of contrast and spatial resolution. Moreover, when projection number was reduced, in order to reduce total imaging time, iterative reconstruction suppressed artifacts that hampered the performance of FBP reconstruction (structural similarity of the reconstructed images with “truth” was improved from 0.15 ± 1.2 × 10−3to 0.66 ± 0.02); and although the system matrix was generated for homogenous optical properties, when heterogeneity (62.98 cm-1variance inµs) was introduced to simulated phantoms, the results were still comparable (structural similarity homo: 0.67 ± 0.02 vs hetero: 0.66 ± 0.02).
more »
« less
Enhancement-constrained acceleration: A robust reconstruction framework in breast DCE-MRI
In patients with dense breasts or at high risk of breast cancer, dynamic contrast enhanced MRI (DCE-MRI) is a highly sensitive diagnostic tool. However, its specificity is highly variable and sometimes low; quantitative measurements of contrast uptake parameters may improve specificity and mitigate this issue. To improve diagnostic accuracy, data need to be captured at high spatial and temporal resolution. While many methods exist to accelerate MRI temporal resolution, not all are optimized to capture breast DCE-MRI dynamics. We propose a novel, flexible, and powerful framework for the reconstruction of highly-undersampled DCE-MRI data: enhancement-constrained acceleration (ECA). Enhancement-constrained acceleration uses an assumption of smooth enhancement at small time-scale to estimate points of smooth enhancement curves in small time intervals at each voxel. This method is tested in silico with physiologically realistic virtual phantoms, simulating state-of-the-art ultrafast acquisitions at 3.5s temporal resolution reconstructed at 0.25s temporal resolution (demo code available here). Virtual phantoms were developed from real patient data and parametrized in continuous time with arterial input function (AIF) models and lesion enhancement functions. Enhancement-constrained acceleration was compared to standard ultrafast reconstruction in estimating the bolus arrival time and initial slope of enhancement from reconstructed images. We found that the ECA method reconstructed images at 0.25s temporal resolution with no significant loss in image fidelity, a 4x reduction in the error of bolus arrival time estimation in lesions ( p < 0.01) and 11x error reduction in blood vessels ( p < 0.01). Our results suggest that ECA is a powerful and versatile tool for breast DCE-MRI.
more »
« less
- Award ID(s):
- 1654076
- PAR ID:
- 10331202
- Editor(s):
- Chen, Xi
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 16
- Issue:
- 10
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0258621
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In plasma discharges, the acceleration of electrons by a fast varying electric field and the subsequent collisional electron energy transfer determines the plasma dynamics, chemical reactivity, and breakdown. Current in situ electric field measurements require reconstruction of the temporal profile over many observations. However, such methods are unsuitable for non-repetitive and unstable plasmas. Here, we present a method for creating “movies” of dynamic electric fields in a single acquisition at sample rates of 500 × 106 fps. This ultrafast diagnostic was demonstrated in radio frequency electric fields between two parallel plates in air, as well as in Ar nanosecond-pulsed single-sided dielectric barrier discharges.more » « less
-
PurposeTo develop a non‐Cartesian k‐space reconstruction method using self‐calibrated region‐specific interpolation kernels for highly accelerated acquisitions. MethodsIn conventional non‐Cartesian GRAPPA with through‐time GRAPPA (TT‐GRAPPA), the use of region‐specific interpolation kernels has demonstrated improved reconstruction quality in dynamic imaging for highly accelerated acquisitions. However, TT‐GRAPPA requires the acquisition of a large number of separate calibration scans. To reduce the overall imaging time, we propose Self‐calibrated Interpolation of Non‐Cartesian data with GRAPPA (SING) to self‐calibrate region‐specific interpolation kernels from dynamic undersampled measurements. The SING method synthesizes calibration data to adapt to the distinct shape of each region‐specific interpolation kernel geometry, and uses a novel local k‐space regularization through an extension of TT‐GRAPPA. This calibration approach is used to reconstruct non‐Cartesian images at high acceleration rates while mitigating noise amplification. The reconstruction quality of SING is compared with conjugate‐gradient SENSE and TT‐GRAPPA in numerical phantoms and in vivo cine data sets. ResultsIn both numerical phantom and in vivo cine data sets, SING offers visually and quantitatively similar reconstruction quality to TT‐GRAPPA, and provides improved reconstruction quality over conjugate‐gradient SENSE. Furthermore, temporal fidelity in SING and TT‐GRAPPA is similar for the same acceleration rates. G‐factor evaluation over the heart shows that SING and TT‐GRAPPA provide similar noise amplification at moderate and high rates. ConclusionThe proposed SING reconstruction enables significant improvement of acquisition efficiency for calibration data, while matching the reconstruction performance of TT‐GRAPPA.more » « less
-
PurposeTo develop a strategy for training a physics‐guided MRI reconstruction neural network without a database of fully sampled data sets. MethodsSelf‐supervised learning via data undersampling (SSDU) for physics‐guided deep learning reconstruction partitions available measurements into two disjoint sets, one of which is used in the data consistency (DC) units in the unrolled network and the other is used to define the loss for training. The proposed training without fully sampled data is compared with fully supervised training with ground‐truth data, as well as conventional compressed‐sensing and parallel imaging methods using the publicly available fastMRI knee database. The same physics‐guided neural network is used for both proposed SSDU and supervised training. The SSDU training is also applied to prospectively two‐fold accelerated high‐resolution brain data sets at different acceleration rates, and compared with parallel imaging. ResultsResults on five different knee sequences at an acceleration rate of 4 shows that the proposed self‐supervised approach performs closely with supervised learning, while significantly outperforming conventional compressed‐sensing and parallel imaging, as characterized by quantitative metrics and a clinical reader study. The results on prospectively subsampled brain data sets, in which supervised learning cannot be used due to lack of ground‐truth reference, show that the proposed self‐supervised approach successfully performs reconstruction at high acceleration rates (4, 6, and 8). Image readings indicate improved visual reconstruction quality with the proposed approach compared with parallel imaging at acquisition acceleration. ConclusionThe proposed SSDU approach allows training of physics‐guided deep learning MRI reconstruction without fully sampled data, while achieving comparable results with supervised deep learning MRI trained on fully sampled data.more » « less
-
Purpose: Magnetic Resonance Imaging (MRI) enables non‐invasive assessment of brain abnormalities during early life development. Permanent magnet scanners operating in the neonatal intensive care unit (NICU) facilitate MRI of sick infants, but have long scan times due to lower signal‐to‐noise ratios (SNR) and limited receive coils. This work accelerates in‐NICU MRI with diffusion probabilistic generative models by developing a training pipeline accounting for these challenges. Methods: We establish a novel training dataset of clinical, 1 Tesla neonatal MR images in collaboration with Aspect Imaging and Sha'are Zedek Medical Center. We propose a pipeline to handle the low quantity and SNR of our real‐world dataset (1) modifying existing network architectures to support varying resolutions; (2) training a single model on all data with learned class embedding vectors; (3) applying self‐supervised denoising before training; and (4) reconstructing by averaging posterior samples. Retrospective under‐sampling experiments, accounting for signal decay, evaluated each item of our proposed methodology. A clinical reader study with practicing pediatric neuroradiologists evaluated our proposed images reconstructed from under‐sampled data. Results: Combining all data, denoising pre‐training, and averaging posterior samples yields quantitative improvements in reconstruction. The generative model decouples the learned prior from the measurement model and functions at two acceleration rates without re‐training. The reader study suggests that proposed images reconstructed from under‐sampled data are adequate for clinical use. Conclusion: Diffusion probabilistic generative models applied with the proposed pipeline to handle challenging real‐world datasets could reduce the scan time of in‐NICU neonatal MRI.more » « less