skip to main content


Title: Enhancement-constrained acceleration: A robust reconstruction framework in breast DCE-MRI
In patients with dense breasts or at high risk of breast cancer, dynamic contrast enhanced MRI (DCE-MRI) is a highly sensitive diagnostic tool. However, its specificity is highly variable and sometimes low; quantitative measurements of contrast uptake parameters may improve specificity and mitigate this issue. To improve diagnostic accuracy, data need to be captured at high spatial and temporal resolution. While many methods exist to accelerate MRI temporal resolution, not all are optimized to capture breast DCE-MRI dynamics. We propose a novel, flexible, and powerful framework for the reconstruction of highly-undersampled DCE-MRI data: enhancement-constrained acceleration (ECA). Enhancement-constrained acceleration uses an assumption of smooth enhancement at small time-scale to estimate points of smooth enhancement curves in small time intervals at each voxel. This method is tested in silico with physiologically realistic virtual phantoms, simulating state-of-the-art ultrafast acquisitions at 3.5s temporal resolution reconstructed at 0.25s temporal resolution (demo code available here). Virtual phantoms were developed from real patient data and parametrized in continuous time with arterial input function (AIF) models and lesion enhancement functions. Enhancement-constrained acceleration was compared to standard ultrafast reconstruction in estimating the bolus arrival time and initial slope of enhancement from reconstructed images. We found that the ECA method reconstructed images at 0.25s temporal resolution with no significant loss in image fidelity, a 4x reduction in the error of bolus arrival time estimation in lesions ( p < 0.01) and 11x error reduction in blood vessels ( p < 0.01). Our results suggest that ECA is a powerful and versatile tool for breast DCE-MRI.  more » « less
Award ID(s):
1654076
NSF-PAR ID:
10331202
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Chen, Xi
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
10
ISSN:
1932-6203
Page Range / eLocation ID:
e0258621
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical coherence tomography (OCT) leverages light scattering by biological tissues as endogenous contrast to form structural images. Light scattering behavior is dictated by the optical properties of the tissue, which depend on microstructural details at the cellular or sub-cellular level. Methods to measure these properties from OCT intensity data have been explored in the context of a number of biomedical applications seeking to access this sub-resolution tissue microstructure and thereby increase the diagnostic impact of OCT. Most commonly, the optical attenuation coefficient, an analogue of the scattering coefficient, has been used as a surrogate metric linking OCT intensity to subcellular particle characteristics. To record attenuation coefficient data that is accurately representative of the underlying physical properties of a given sample, it is necessary to account for the impact of the OCT imaging system itself on the distribution of light intensity in the sample, including the numerical aperture (NA) of the system and the location of the focal plane with respect to the sample surface, as well as the potential contribution of multiple scattering to the reconstructed intensity signal. Although these considerations complicate attenuation coefficient measurement and interpretation, a suitably calibrated system may potentiate a powerful strategy for gaining additional information about the scattering behavior and microstructure of samples. In this work, we experimentally show that altering the OCT system geometry minimally impacts measured attenuation coefficients in samples presumed to be singly scattering, but changes these measurements in more highly scattering samples. Using both depth-resolved attenuation coefficient data and layer-resolved backscattering coefficients, we demonstrate the retrieval of scattering particle diameter and concentration in tissue-mimicking phantoms, and the impact of presumed multiple scattering on these calculations. We further extend our approach to characterize a murine brain tissue sample and highlight a tumor-bearing region based on increased scattering particle density. Through these methods, we not only enhance conventional OCT attenuation coefficient analysis by decoupling the independent effects of particle size and concentration, but also discriminate areas of strong multiple scattering through minor changes to system topology to provide a framework for assessing the accuracy of these measurements.

     
    more » « less
  2. This work concerns a fluorescence optical projection tomography system for low scattering tissue, like lymph nodes, with angular-domain rejection of highly scattered photons. In this regime, filtered backprojection (FBP) image reconstruction has been shown to provide reasonable quality images, yet here a comparison of image quality between images obtained by FBP and iterative image reconstruction with a Monte Carlo generated system matrix, demonstrate measurable improvements with the iterative method. Through simulated and experimental phantoms, iterative algorithms consistently outperformed FBP in terms of contrast and spatial resolution. Moreover, when projection number was reduced, in order to reduce total imaging time, iterative reconstruction suppressed artifacts that hampered the performance of FBP reconstruction (structural similarity of the reconstructed images with “truth” was improved from 0.15 ± 1.2 × 10−3to 0.66 ± 0.02); and although the system matrix was generated for homogenous optical properties, when heterogeneity (62.98 cm-1variance inµs) was introduced to simulated phantoms, the results were still comparable (structural similarity homo: 0.67 ± 0.02 vs hetero: 0.66 ± 0.02).

     
    more » « less
  3. Purpose

    To develop a non‐Cartesian k‐space reconstruction method using self‐calibrated region‐specific interpolation kernels for highly accelerated acquisitions.

    Methods

    In conventional non‐Cartesian GRAPPA with through‐time GRAPPA (TT‐GRAPPA), the use of region‐specific interpolation kernels has demonstrated improved reconstruction quality in dynamic imaging for highly accelerated acquisitions. However, TT‐GRAPPA requires the acquisition of a large number of separate calibration scans. To reduce the overall imaging time, we propose Self‐calibrated Interpolation of Non‐Cartesian data with GRAPPA (SING) to self‐calibrate region‐specific interpolation kernels from dynamic undersampled measurements. The SING method synthesizes calibration data to adapt to the distinct shape of each region‐specific interpolation kernel geometry, and uses a novel local k‐space regularization through an extension of TT‐GRAPPA. This calibration approach is used to reconstruct non‐Cartesian images at high acceleration rates while mitigating noise amplification. The reconstruction quality of SING is compared with conjugate‐gradient SENSE and TT‐GRAPPA in numerical phantoms and in vivo cine data sets.

    Results

    In both numerical phantom and in vivo cine data sets, SING offers visually and quantitatively similar reconstruction quality to TT‐GRAPPA, and provides improved reconstruction quality over conjugate‐gradient SENSE. Furthermore, temporal fidelity in SING and TT‐GRAPPA is similar for the same acceleration rates. G‐factor evaluation over the heart shows that SING and TT‐GRAPPA provide similar noise amplification at moderate and high rates.

    Conclusion

    The proposed SING reconstruction enables significant improvement of acquisition efficiency for calibration data, while matching the reconstruction performance of TT‐GRAPPA.

     
    more » « less
  4. Purpose

    To develop a scan‐specific model that estimates and corrects k‐space errors made when reconstructing accelerated MRI data.

    Methods

    Scan‐specific artifact reduction in k‐space (SPARK) trains a convolutional‐neural‐network to estimate and correct k‐space errors made by an input reconstruction technique by back‐propagating from the mean‐squared‐error loss between an auto‐calibration signal (ACS) and the input technique’s reconstructed ACS. First, SPARK is applied to generalized autocalibrating partially parallel acquisitions (GRAPPA) and demonstrates improved robustness over other scan‐specific models, such as robust artificial‐neural‐networks for k‐space interpolation (RAKI) and residual‐RAKI. Subsequent experiments demonstrate that SPARK synergizes with residual‐RAKI to improve reconstruction performance. SPARK also improves reconstruction quality when applied to advanced acquisition and reconstruction techniques like 2D virtual coil (VC‐) GRAPPA, 2D LORAKS, 3D GRAPPA without an integrated ACS region, and 2D/3D wave‐encoded imaging.

    Results

    SPARK yields SSIM improvement and 1.5 – 2× root mean squared error (RMSE) reduction when applied to GRAPPA and improves robustness to ACS size for various acceleration rates in comparison to other scan‐specific techniques. When applied to advanced reconstruction techniques such as residual‐RAKI, 2D VC‐GRAPPA and LORAKS, SPARK achieves up to 20% RMSE improvement. SPARK with 3D GRAPPA also improves RMSE performance by ~2×, SSIM performance, and perceived image quality without a fully sampled ACS region. Finally, SPARK synergizes with non‐Cartesian, 2D and 3D wave‐encoding imaging by reducing RMSE between 20% and 25% and providing qualitative improvements.

    Conclusion

    SPARK synergizes with physics‐based acquisition and reconstruction techniques to improve accelerated MRI by training scan‐specific models to estimate and correct reconstruction errors in k‐space.

     
    more » « less
  5. Abstract

    Real-time magnetic resonance imaging (RT-MRI) of human speech production is enabling significant advances in speech science, linguistics, bio-inspired speech technology development, and clinical applications. Easy access to RT-MRI is however limited, and comprehensive datasets with broad access are needed to catalyze research across numerous domains. The imaging of the rapidly moving articulators and dynamic airway shaping during speech demands high spatio-temporal resolution and robust reconstruction methods. Further, while reconstructed images have been published, to-date there is no open dataset providing raw multi-coil RT-MRI data from an optimized speech production experimental setup. Such datasets could enable new and improved methods for dynamic image reconstruction, artifact correction, feature extraction, and direct extraction of linguistically-relevant biomarkers. The present dataset offers a unique corpus of 2D sagittal-view RT-MRI videos along with synchronized audio for 75 participants performing linguistically motivated speech tasks, alongside the corresponding public domain raw RT-MRI data. The dataset also includes 3D volumetric vocal tract MRI during sustained speech sounds and high-resolution static anatomical T2-weighted upper airway MRI for each participant.

     
    more » « less