skip to main content

Title: Highly covalent metal–ligand π bonding in chelated bis- and tris(iminoxolene) complexes of osmium and ruthenium
The bis(aminophenol) 2,2′-biphenylbis(3,5-di- tert -butyl-2-hydroxyphenylamine) (ClipH 4 ) forms trans -(Clip)Os(py) 2 upon aerobic reaction of the ligand with {( p -cymene)OsCl 2 } 2 in the presence of pyridine and triethylamine. A more oxidized species, cis -β-(Clip)Os(OCH 2 CH 2 O), is formed from reaction of the ligand with the osmium( vi ) complex OsO(OCH 2 CH 2 O) 2 , and reacts with Me 3 SiCl to give the chloro complex cis -β-(Clip)OsCl 2 . Octahedral osmium and ruthenium tris-iminoxolene complexes are formed from the chelating ligand tris(2-(3′,5′-di- tert -butyl-2′-hydroxyphenyl)amino-4-methylphenyl)amine (MeClampH 6 ) on aerobic reaction with divalent metal precursors. The complexes’ structural and electronic features are well described using a simple bonding model that emphasizes the covalency of the π bonding between the metal and iminoxolene ligands rather than attempting to dissect the parts into discrete oxidation states. Emphasizing the continuity of bonding between disparate complexes, the structural data from a variety of Os and Ru complexes show good correlations to π bond order, and the response of the intraligand bond distances to the bond order can be analyzed to illuminate the polarity of the bonding between metal and the redox-active orbital on the iminoxolenes. The osmium compounds’ π bonding orbitals are about 40% metal-centered and 60% ligand-centered, with the ruthenium compounds’ orbitals about 65% metal-centered and 35% ligand-centered.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Dalton Transactions
Page Range / eLocation ID:
7015 to 7027
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 2-(Arylamino)-4,6-di- tert -butylphenols containing 4-substituted phenyl groups ( R apH 2 ) react with oxobis(ethylene glycolato)osmium( vi ) in acetone to give square pyramidal bis(amidophenoxide)oxoosmium( vi ) complexes. A mono-amidophenoxide complex is observed as an intermediate in these reactions. Reactions in dichloromethane yield the diolate ( H ap) 2 Os(OCH 2 CH 2 O). Both the glycolate and oxo complex are converted to the corresponding cis -dichloride complex on treatment with chlorotrimethylsilane. The novel bis(aminophenol) ligand EganH 4 , containing an ethylene glycol dianthranilate bridge, forms the chelated bis(amidophenoxide) complex (Egan)OsO, where the two nitrogen atoms of the tetradentate ligand bind in the trans positions of the square pyramid. Structural and spectroscopic features of the complexes are described well by an osmium( vi )-amidophenoxide formulation, with the amount of π donation from ligand to metal increasing markedly as the co-ligands change from oxo to diolate to dichloride. In the oxo-bis(amidophenoxides), the symmetry of the ligand π orbitals results in only one effective π donor interaction, splitting the energy of the two osmium-oxo π* orbitals and rendering the osmium-oxo bonding appreciably anisotropic. 
    more » « less
  2. The tris(aminophenol) ligand tris(4-methyl-2-(3′,5′-di- tert -butyl-2′-hydroxyphenylamino)phenyl)amine, MeClampH 6 , reacts with Ti(O i Pr) 4 to give, after exposure to air, the dark purple, neutral, diamagnetic complex (MeClamp)Ti. The compound is six-coordinate, with an uncoordinated central nitrogen (Ti–N = 2.8274(12) Å), and contains titanium( iv ) and a doubly oxidized ligand, formally a bis(iminosemiquinone)-mono(amidophenoxide). The compound is unsymmetrical in the solid state, though the three ligands are equivalent on the NMR timescale in solution. Ab initio calculations indicate that the ground state is a multiconfigurational singlet, with a low-lying multiconfigurational triplet state. Variable-temperature NMR measurements are consistent with a singlet–triplet gap of 1200 ± 70 cm −1 , in good agreement with calculations. The distortion from threefold symmetry allows a low-lying, partially populated ligand-centered π nonbonding orbital to mix with largely occupied metal–ligand π bonding orbitals. The energetic accessibility of this distortion is inversely related to the strength of the metal–ligand π bonding interaction. 
    more » « less
  3. In this work, we investigated bonding features of 15 ruthenium(II) nitrile complexes of the type [Ru(tpy)(L)-(CH 3 CN)] n+ , containing the tridentate tpy ligand (tpy = 2,2′:6′,2″-terpyridine) and various bidentate ancillary ligands L; 12 compounds originally synthesized by Loftus et al. [J. Phys. Chem. C 123, 10291–10299 (2019)] and three new complexes. We utilized local vibrational force constants derived from the local mode theory as a quantitative measure of bond strength complemented with the topological analysis of the electron density and the natural bond orbital analysis. Loftus et al. suggested that nitrile dissociation occurs after light induced singlet–triplet transition of the original complexes and they used as a measure of nitrile release efficiency quantum yields for ligand exchange in water. They observed larger quantum yields for complexes with smaller singlet–triplet energy gaps. The major goal of this work was to assess how the Ru–NC and Ru–L bond strengths in these 15 compounds relate to and explain the experimental data of Loftus et al., particularly focusing on the question whether there is a direct correlation between Ru–NC bond strength and measured quantum yield. Our study provides the interesting result that the compounds with the highest quantum yields also have the strongest Ru–NC bonds suggesting that breaking the Ru–NC bond is not the driving force for the delivery process rather than the change of the metal framework as revealed by first results of a unified reaction valley approach investigation of the mechanism. Compounds with the highest quantum yield show larger electronic structure changes upon singlet–triplet excitation, i.e., larger changes in bond strength, covalency, and difference between the singlet and triplet HOMOs, with exception of the compound 12. In summary, this work provides new insights into the interplay of local properties and experimental quantum yields forming in synergy a useful tool for fine tuning of existing and future design of new nitrile releasing ruthenium compounds. We hope that this work will bring theoretical and experimental studies closer together and serves as an incubator for future collaboration between computational chemists and their experimental colleagues. 
    more » « less
  4. Structural analyses of the compounds di-μ-acetato-κ 4 O : O ′-bis{[2-methoxy- N , N -bis(quinolin-2-ylmethyl)ethanamine-κ 4 N , N ′, N ′′, O ]manganese(II)} bis(tetraphenylborate) dichloromethane 1.45-solvate, [Mn 2 (C 23 O 2 ) 2 (C 23 H 23 N 3 O) 2 ](C 24 H 20 B)·1.45CH 2 Cl 2 or [Mn(DQMEA)(μ-OAc) 2 Mn(DQMEA)](BPh 4 ) 2 ·1.45CH 2 Cl 2 or [1] (BPh 4 ) 2 ·1.45CH 2 Cl 2 , and (acetato-κ O )[2-hydroxy- N , N -bis(quinolin-2-ylmethyl)ethanamine-κ 4 N , N ′, N ′′, O ](methanol-κ O )manganese(II) tetraphenylborate methanol monosolvate, [Mn(CH 3 COO)(C 22 H 21 N 3 O)(CH 3 OH)](C 24 H 20 B)·CH 3 OH or [Mn(DQEA)(OAc)(CH 3 OH)]BPh 4 ·CH 3 OH or [2] BPh 4 ·CH 3 OH, by single-crystal X-ray diffraction reveal distinct differences in the geometry of coordination of the tripodal DQEA and DQMEA ligands to Mn II ions. In the asymmetric unit, compound [1] (BPh 4 ) 2 ·(CH 2 Cl 2 ) 1.45 crystallizes as a dimer in which each manganese(II) center is coordinated by the central amine nitrogen, the nitrogen atom of each quinoline group, and the methoxy-oxygen of the tetradentate DQMEA ligand, and two bridging-acetate oxygen atoms. The symmetric Mn II centers have a distorted, octahedral geometry in which the quinoline nitrogen atoms are trans to each other resulting in co-planarity of the quinoline rings. For each Mn II center, a coordinated acetate oxygen participates in C—H...O hydrogen-bonding interactions with the two quinolyl moieties, further stabilizing the trans structure. Within the crystal, weak π – π stacking interactions and intermolecular cation–anion interactions stabilize the crystal packing. In the asymmetric unit, compound [2] BPh 4 ·CH 3 OH crystallizes as a monomer in which the manganese(II) ion is coordinated to the central nitrogen, the nitrogen atom of each quinoline group, and the alcohol oxygen of the tetradentate DQEA ligand, an oxygen atom of OAc, and the oxygen atom of a methanol ligand. The geometry of the Mn II center in [2] BPh 4 ·CH 3 OH is also a distorted octahedron, but the quinoline nitrogen atoms are cis to each other in this structure. Hydrogen bonding between the acetate oxygen atoms and hydroxyl (O—H...O) and quinolyl (C—H...O and N—H...O) moieties of the DQEA ligand stabilize the complex in this cis configuration. Within the crystal, dimerization of complexes occurs by the formation of a pair of intermolecular O3—H3...O2 hydrogen bonds between the coordinated hydroxyl oxygen of the DQEA ligand of one complex and an acetate oxygen of another. Additional hydrogen-bonding and intermolecular cation–anion interactions contribute to the crystal packing. 
    more » « less
  5. Optically active C 2 -symmetric bis(aminophenols) based on ( R )-2,2′-diaminobinaphthyl (BiniqH 4 ) and ( R , R )-2,3-butanediyldianthranilate (BdanH 4 ) have been prepared by condensation of the diamines with 3,5-di- tert -butylcatechol. Group 10 bis(iminosemiquinone) complexes ( R )-(Biniq)M (M = Pd, Pt) and ( C , R , R )-(Bdan)Pd have been prepared by oxidatively metalating the corresponding ligands. In ( R )-(Biniq)M, the C 2 axis passes through the approximate square plane of the bis(iminosemiquinone)metal core, while in ( C , R , R )-(Bdan)Pd the C 2 axis is perpendicular to this plane. In the latter compound, the ( R , R )-butanediyl strap binds selectively over one enantioface of the metal complex in a conformation where the methyl groups are anti to one another. Osmium oxo complexes with the intrinsically chiral OsO(amidophenoxide) 2 chromophore are obtained by metalation of OsO(OCH 2 CH 2 O) 2 with ( R , R )-BdanH 4 . Both the ( A , R , R ) and ( C , R , R ) diastereomers can be observed, with metalation in refluxing toluene selectively giving the latter isomer. The electronic structures of the complexes are illuminated by the circular dichroism spectra, in conjuction with the optical spectra and TDDFT calculations. 
    more » « less