skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-Order Multipole and Binary Love Number Universal Relations
Using a data set of approximately 2 million phenomenological equations of state consistent with observational constraints, we construct new equation-of-state-insensitive universal relations that exist between the multipolar tidal deformability parameters of neutron stars, Λl, for several high-order multipoles (l=5,6,7,8), and we consider finite-size effects of these high-order multipoles in waveform modeling. We also confirm the existence of a universal relation between the radius of the 1.4M⊙ NS, R1.4 and the reduced tidal parameter of the binary, Λ˜, and the chirp mass. We extend this relation to a large number of chirp masses and to the radii of isolated NSs of different mass M, RM. We find that there is an optimal value of M for every M such that the uncertainty in the estimate of RM is minimized when using the relation. We discuss the utility and implications of these relations for the upcoming LIGO O4 run and third-generation detectors.  more » « less
Award ID(s):
2020275 2011725 2116686
PAR ID:
10331441
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Universe
Volume:
7
Issue:
10
ISSN:
2218-1997
Page Range / eLocation ID:
368
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Quasiperiodic oscillations (QPOs) have been recently discovered in the short gamma-ray bursts (GRBs) 910711 and 931101B. Their frequencies are consistent with those of the quasiradial and quadrupolar oscillations of binary neutron star (BNS) merger remnants, as obtained in numerical relativity simulations. These simulations reveal quasi-universal relations between the remnant oscillation frequencies and the tidal coupling constant of the binaries. Under the assumption that the observed QPOs are due to these postmerger oscillations, we use the frequency–tide relations in a Bayesian framework to infer the source redshift, as well as the chirp mass and the binary tidal deformability of the BNS progenitors for GRBs 910711 and 931101B. We further use this inference to estimate bounds on the mass–radius relation for neutron stars. By combining the estimates from the two GRBs, we find a 68% credible range R 1.4 = 12.4 8 0.40 + 0.41 km for the radius of a neutron star with massM= 1.4M, which is one of the tightest bounds to date. 
    more » « less
  2. null (Ed.)
    ABSTRACT The past decade has seen significant progress in understanding galaxy formation and evolution using large-scale cosmological simulations. While these simulations produce galaxies in overall good agreement with observations, they employ different sub-grid models for galaxies and supermassive black holes (BHs). We investigate the impact of the sub-grid models on the BH mass properties of the Illustris, TNG100, TNG300, Horizon-AGN, EAGLE, and SIMBA simulations, focusing on the MBH − M⋆ relation and the BH mass function. All simulations predict tight MBH − M⋆ relations, and struggle to produce BHs of $$M_{\rm BH}\leqslant 10^{7.5}\, \rm M_{\odot }$$ in galaxies of $$M_{\star }\sim 10^{10.5}\!-\!10^{11.5}\, \rm M_{\odot }$$. While the time evolution of the mean MBH − M⋆ relation is mild ($$\rm \Delta M_{\rm BH}\leqslant 1\, dex$$ for 0 $$\leqslant z \leqslant$$ 5) for all the simulations, its linearity (shape) and normalization varies from simulation to simulation. The strength of SN feedback has a large impact on the linearity and time evolution for $$M_{\star }\leqslant 10^{10.5}\, \rm M_{\odot }$$. We find that the low-mass end is a good discriminant of the simulation models, and highlights the need for new observational constraints. At the high-mass end, strong AGN feedback can suppress the time evolution of the relation normalization. Compared with observations of the local Universe, we find an excess of BHs with $$M_{\rm BH}\geqslant 10^{9}\, \rm M_{\odot }$$ in most of the simulations. The BH mass function is dominated by efficiently accreting BHs ($$\log _{10}\, f_{\rm Edd}\geqslant -2$$) at high redshifts, and transitions progressively from the high-mass to the low-mass end to be governed by inactive BHs. The transition time and the contribution of active BHs are different among the simulations, and can be used to evaluate models against observations. 
    more » « less
  3. ABSTRACT We present a post-processing catalogue of globular clusters (GCs) for the 39 most massive groups and clusters in the TNG50 simulation of the IlllustrisTNG project (virial masses $$M_{200} =[5\times 10^{12} \rm {\!-\!} 2 \times 10^{14}$$] M⊙). We tag GC particles to all galaxies with stellar mass M* ≥ 5 × 106 M⊙, and we calibrate their masses to reproduce the observed power-law relation between GC mass and halo mass for galaxies with M200 ≥ 1011 M⊙ (corresponding to M* ∼ 109 M⊙). Here, we explore whether an extrapolation of this MGC–M200 relation to lower mass dwarfs is consistent with current observations. We find a good agreement between our predicted number and specific frequency of GCs in dwarfs with $$\rm {\it M}_*=[5 \times 10^6 \rm {\!-\!} 10^9]$$ M⊙ and observations. Moreover, we predict a steep decline in the GC occupation fraction for dwarfs with M* < 109 M⊙ that agrees well with current observational constraints. This declining occupation fraction is due to a combination of tidal stripping in all dwarfs plus a stochastic sampling of the GC mass function for dwarfs with M* < 107.5 M⊙. Our simulations also reproduce available constraints on the abundance of intracluster GCs in Virgo and Centaurus A. These successes provide support to the hypothesis that the MGC–M200 relation holds, albeit with more scatter, all the way down to the regime of classical dwarf spheroidals in these environments. Our GC catalogues are publicly available as part of the IllustrisTNG data release. 
    more » « less
  4. ABSTRACT Recent years have seen growing interest in post-processing cosmological simulations with radiative transfer codes to predict observable fluxes for simulated galaxies. However, this can be slow, and requires a number of assumptions in cases where simulations do not resolve the interstellar medium (ISM). Zoom-in simulations better resolve the detailed structure of the ISM and the geometry of stars and gas; however, statistics are limited due to the computational cost of simulating even a single halo. In this paper, we make use of a set of high-resolution, cosmological zoom-in simulations of massive ($$M_{\star }\gtrsim 10^{10.5}\, \rm {M_{\odot }}$$ at z = 2), star-forming galaxies from the FIRE suite. We run the skirt radiative transfer code on hundreds of snapshots in the redshift range 1.5 < z < 5 and calibrate a power-law scaling relation between dust mass, star formation rate, and $$870\, \mu \rm {m}$$ flux density. The derived scaling relation shows encouraging consistency with observational results from the sub-millimetre-selected AS2UDS sample. We extend this to other wavelengths, deriving scaling relations between dust mass, stellar mass, star formation rate, and redshift and sub-millimetre flux density at observed-frame wavelengths between $$\sim \! 340$$ and $$\sim \! 870\, \mu \rm {m}$$. We then apply the scaling relations to galaxies drawn from EAGLE, a large box cosmological simulation. We show that the scaling relations predict EAGLE sub-millimetre number counts that agree well with previous results that were derived using far more computationally expensive radiative transfer techniques. Our scaling relations can be applied to other simulations and semi-analytical or semi-empirical models to generate robust and fast predictions for sub-millimetre number counts. 
    more » « less
  5. ABSTRACT We analyse the rest-optical emission-line ratios of z ∼ 1.5 galaxies drawn from the Multi-Object Spectrometer for Infra-Red Exploration Deep Evolution Field (MOSDEF) survey. Using composite spectra, we investigate the mass–metallicity relation (MZR) at z ∼ 1.5 and measure its evolution to z = 0. When using gas-phase metallicities based on the N2 line ratio, we find that the MZR evolution from z ∼ 1.5 to z = 0 depends on stellar mass, evolving by $$\Delta \rm log(\rm O/H) \sim 0.25$$ dex at M*< $$10^{9.75}\, \mathrm{M}_{\odot }$$ down to $$\Delta \rm log(\rm O/H) \sim 0.05$$ at M* ≳ $$10^{10.5}\, \mathrm{M}_{\odot }$$. In contrast, the O3N2-based MZR shows a constant offset of $$\Delta \rm log(\rm O/H) \sim 0.30$$ across all masses, consistent with previous MOSDEF results based on independent metallicity indicators, and suggesting that O3N2 provides a more robust metallicity calibration for our z ∼ 1.5 sample. We investigated the secondary dependence of the MZR on star formation rate (SFR) by measuring correlated scatter about the mean M*-specific SFR and M*−$$\log (\rm O3N2)$$ relations. We find an anticorrelation between $$\log (\rm O/H)$$ and sSFR offsets, indicating the presence of a M*−SFR−Z relation, though with limited significance. Additionally, we find that our z ∼ 1.5 stacks lie along the z = 0 metallicity sequence at fixed μ = log (M*/M⊙) − 0.6 × $$\log (\rm SFR / M_{\odot } \, yr^{-1})$$ suggesting that the z ∼ 1.5 stacks can be described by the z = 0 fundamental metallicity relation (FMR). However, using different calibrations can shift the calculated metallicities off of the local FMR, indicating that appropriate calibrations are essential for understanding metallicity evolution with redshift. Finally, understanding how [N ii]/H α scales with galaxy properties is crucial to accurately describe the effects of blended [N ii] and H α on redshift and H α fiux measurements in future large surveys utilizing low-resolution spectra such as with Euclid and the Roman Space Telescope. 
    more » « less