Abstract The auditory system comprises multiple subcortical brain structures that process and refine incoming acoustic signals along the primary auditory pathway. Due to technical limitations of imaging small structures deep inside the brain, most of our knowledge of the subcortical auditory system is based on research in animal models using invasive methodologies. Advances in ultrahigh-field functional magnetic resonance imaging (fMRI) acquisition have enabled novel noninvasive investigations of the human auditory subcortex, including fundamental features of auditory representation such as tonotopy and periodotopy. However, functional connectivity across subcortical networks is still underexplored in humans, with ongoing development of related methods. Traditionally, functional connectivity is estimated from fMRI data with full correlation matrices. However, partial correlations reveal the relationship between two regions after removing the effects of all other regions, reflecting more direct connectivity. Partial correlation analysis is particularly promising in the ascending auditory system, where sensory information is passed in an obligatory manner, from nucleus to nucleus up the primary auditory pathway, providing redundant but also increasingly abstract representations of auditory stimuli. While most existing methods for learning conditional dependency structures based on partial correlations assume independently and identically Gaussian distributed data, fMRI data exhibit significant deviations from Gaussianity as well as high-temporal autocorrelation. In this paper, we developed an autoregressive matrix-Gaussian copula graphical model (ARMGCGM) approach to estimate the partial correlations and thereby infer the functional connectivity patterns within the auditory system while appropriately accounting for autocorrelations between successive fMRI scans. Our results show strong positive partial correlations between successive structures in the primary auditory pathway on each side (left and right), including between auditory midbrain and thalamus, and between primary and associative auditory cortex. These results are highly stable when splitting the data in halves according to the acquisition schemes and computing partial correlations separately for each half of the data, as well as across cross-validation folds. In contrast, full correlation-based analysis identified a rich network of interconnectivity that was not specific to adjacent nodes along the pathway. Overall, our results demonstrate that unique functional connectivity patterns along the auditory pathway are recoverable using novel connectivity approaches and that our connectivity methods are reliable across multiple acquisitions.
more »
« less
A Decentralized ComBat Algorithm and Applications to Functional Network Connectivity
Recent studies showed that working with neuroimage data collected from different research facilities or locations may incur additional source dependency, affecting the overall statistical power. This problem can be mitigated with data harmonization approaches. Recently, the ComBat method has become commonly adopted for various neuroimage modalities. While open neuroimaging datasets are becoming more common, a substantial amount of data is still unable to be shared for various reasons. In addition, current approaches require moving all the data to a central location, which requires additional resources and creates redundant copies of the same datasets. To address these issues, we propose a decentralized harmonization approach that does not create redundant copies of the original datasets and performs remote operations on the datasets separately without sharing any individual subject data, ensuring a certain level of privacy and reducing regulatory hurdles. We proposed a novel approach called “Decentralized ComBat” which can harmonize datasets separately without combining the datasets. We tested our model by harmonizing functional network connectivity datasets from two traumatic brain injury studies in a decentralized way. Also, we used simulations to analyze the performance and scalability of our model when the number of data collection sites increases. We compare the output with centralized ComBat and show that the proposed approach produces similar results, increasing the sensitivity of the functional network connectivity analysis and validating our approach. Simulations show that our model can be easily scaled to many more datasets based on the requirement. In sum, we believe this provides a powerful tool, further complementing open data and allowing for integrating public and private datasets.
more »
« less
- Award ID(s):
- 2112455
- PAR ID:
- 10331804
- Date Published:
- Journal Name:
- Frontiers in Neurology
- Volume:
- 13
- ISSN:
- 1664-2295
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The burgeoning field of brain health research increasingly leverages artificial intelligence (AI) to analyze and interpret neuroimaging data. Medical foundation models have shown promise of superior performance with better sample efficiency. This work introduces a novel approach towards creating 3-dimensional (3D) medical foundation models for multimodal neuroimage segmentation through self-supervised training. Our approach involves a novel two-stage pretraining approach using vision transformers. The first stage encodes anatomical structures in generally healthy brains from the large-scale unlabeled neuroimage dataset of multimodal brain magnetic resonance imaging (MRI) images from 41,400 participants. This stage of pertaining focuses on identifying key features such as shapes and sizes of different brain structures. The second pretraining stage identifies disease-specific attributes, such as geometric shapes of tumors and lesions and spatial placements within the brain. This dual-phase methodology significantly reduces the extensive data requirements usually necessary for AI model training in neuroimage segmentation with the flexibility to adapt to various imaging modalities. We rigorously evaluate our model, BrainSegFounder, using the Brain Tumor Segmentation (BraTS) challenge and Anatomical Tracings of Lesions After Stroke v2.0 (ATLAS v2.0) datasets. BrainSegFounder demonstrates a significant performance gain, surpassing the achievements of the previous winning solutions using fully supervised learning. Our findings underscore the impact of scaling up both the model complexity and the volume of unlabeled training data derived from generally healthy brains. Both of these factors enhance the accuracy and predictive capabilities of the model in neuroimage segmentation tasks. Our pretrained models and code are at https://github.com/lab-smile/BrainSegFounder.more » « less
-
A bstract We present a novel computational approach for extracting localized signals from smooth background distributions. We focus on datasets that can be naturally presented as binned integer counts, demonstrating our procedure on the CERN open dataset with the Higgs boson signature, from the ATLAS collaboration at the Large Hadron Collider. Our approach is based on Gaussian Process (GP) regression — a powerful and flexible machine learning technique which has allowed us to model the background without specifying its functional form explicitly and separately measure the background and signal contributions in a robust and reproducible manner. Unlike functional fits, our GP-regression-based approach does not need to be constantly updated as more data becomes available. We discuss how to select the GP kernel type, considering trade-offs between kernel complexity and its ability to capture the features of the background distribution. We show that our GP framework can be used to detect the Higgs boson resonance in the data with more statistical significance than a polynomial fit specifically tailored to the dataset. Finally, we use Markov Chain Monte Carlo (MCMC) sampling to confirm the statistical significance of the extracted Higgs signature.more » « less
-
Abstract Most semantic segmentation approaches of big data hyperspectral images use and require preprocessing steps in the form of patching to accurately classify diversified land cover in remotely sensed images. These approaches use patching to incorporate the rich spatial neighborhood information in images and exploit the simplicity and segmentability of the most common datasets. In contrast, most landmasses in the world consist of overlapping and diffused classes, making neighborhood information weaker than what is seen in common datasets. To combat this common issue and generalize the segmentation models to more complex and diverse hyperspectral datasets, in this work, we propose a novel flagship model: Clustering Ensemble U-Net. Our model uses the ensemble method to combine spectral information extracted from convolutional neural network training on a cluster of landscape pixels. Our model outperforms existing state-of-the-art hyperspectral semantic segmentation methods and gets competitive performance with and without patching when compared to baseline models. We highlight our model’s high performance across six popular hyperspectral datasets including Kennedy Space Center, Houston, and Indian Pines, then compare them to current top-performing models.more » « less
-
Resting-state functional magnetic resonance imaging (rs-fMRI) is a noninvasive technique pivotal for understanding human neural mechanisms of intricate cognitive processes. Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest, or dynamic functional connectivity matrices with a sliding window approach. These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand. While deep learning has gained substantial popularity for modeling complex relational data, its application to uncovering the spatiotemporal dynamics of the brain is still limited. In this study we propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series and employs a specialized graph neural network for the final classification. Our model, DSAM, leverages temporal causal convolutional networks to capture the temporal dynamics in both low- and high-level feature representations, a temporal attention unit to identify important time points, a self-attention unit to construct the goal-specific connectivity matrix, and a novel variant of graph neural network to capture the spatial dynamics for downstream classification. To validate our approach, we conducted experiments on the Human Connectome Project dataset with 1075 samples to build and interpret the model for the classification of sex group, and the Adolescent Brain Cognitive Development Dataset with 8520 samples for independent testing. Compared our proposed framework with other state-of-art models, results suggested this novel approach goes beyond the assumption of a fixed connectivity matrix, and provides evidence of goal-specific brain connectivity patterns, which opens up potential to gain deeper insights into how the human brain adapts its functional connectivity specific to the task at hand.more » « less
An official website of the United States government

