skip to main content


Title: Experimental study of the proton-transfer reaction C + H 2 + → CH + + H and its isotopic variant (D 2 + )
We report absolute integral cross section (ICS) measurements using a dual-source merged-fast-beams apparatus to study the titular reactions over the relative translational energy range of E r ∼ 0.01–10 eV. We used photodetachment of C − to produce a pure beam of atomic C in the ground electronic 3 P term, with statistically populated fine-structure levels. The H 2 + and D 2 + were formed in an electron impact ionization source, with well known vibrational and rotational distributions. The experimental work is complemented by a theoretical study of the CH 2 + electronic system in the reactant and product channels, which helps to clarify the possible reaction mechanisms underlying the ICS measurements. Our measurements provide evidence that the reactions are barrierless and exoergic. They also indicate the apparent absence of an intermolecular isotope effect, to within the total experimental uncertainties. Capture models, taking into account either the charge-induced dipole interaction potential or the combined charge-quadrupole and charge-induced dipole interaction potentials, produce reaction cross sections that lie a factor of ∼4 above the experimental results. Based on our theoretical study, we hypothesize that the reaction is most likely to proceed adiabatically through the 1 4 A′ and 1 4 A′′ states of CH 2 + via the reaction C( 3 P) + H 2 + ( 2 Σ+g) → CH + ( 3 Π) + H( 2 S). We also hypothesize that at low collision energies only H 2 + ( v ≤ 2) and D 2 + ( v ≤ 3) contribute to the titular reactions, due to the onset of dissociative charge transfer for higher vibrational v levels. Incorporating these assumptions into the capture models brings them into better agreement with the experimental results. Still, for energies ≲0.1 eV where capture models are most relevant, the modified charge-induced dipole model yields reaction cross sections with an incorrect energy dependence and lying ∼10% below the experimental results. The capture cross section obtained from the combined charge-quadrupole and charge-induced dipole model better matches the measured energy dependence but lies ∼30–50% above the experimental results. These findings provide important guidance for future quasiclassical trajectory and quantum mechanical treatments of this reaction.  more » « less
Award ID(s):
1613267
PAR ID:
10331888
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
22
Issue:
46
ISSN:
1463-9076
Page Range / eLocation ID:
27364 to 27384
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    By coupling a newly developed quantum-electronic-state-selected supersonically cooled vanadium cation (V + ) beam source with a double quadrupole-double octopole (DQDO) ion–molecule reaction apparatus, we have investigated detailed absolute integral cross sections ( σ 's) for the reactions, V + [a 5 D J ( J = 0, 2), a 5 F J ( J = 1, 2), and a 3 F J ( J = 2, 3)] + CH 4 , covering the center-of-mass collision energy range of E cm = 0.1–10.0 eV. Three product channels, VH + + CH 3 , VCH 2 + + H 2 , and VCH 3 + + H, are unambiguously identified based on E cm -threshold measurements. No J -dependences for the σ curves ( σ versus E cm plots) of individual electronic states are discernible, which may indicate that the spin–orbit coupling is weak and has little effect on chemical reactivity. For all three product channels, the maximum σ values for the triplet a 3 F J state [ σ (a 3 F J )] are found to be more than ten times larger than those for the quintet σ (a 5 D J ) and σ (a 5 F J ) states, showing that a reaction mechanism favoring the conservation of total electron spin. Without performing a detailed theoretical study, we have tentatively interpreted that a weak quintet-to-triplet spin crossing is operative for the activation reaction. The σ (a 5 D 0 , a 5 F 1 , and a 3 F 2) measurements for the VH + , VCH 2 + , and VCH 3 + product ion channels along with accounting of the kinetic energy distribution due to the thermal broadening effect for CH 4 have allowed the determination of the 0 K bond dissociation energies: D 0 (V + –H) = 2.02 (0.05) eV, D 0 (V + –CH 2 ) = 3.40 (0.07) eV, and D 0 (V + –CH 3 ) = 2.07 (0.09) eV. Detailed branching ratios of product ion channels for the titled reaction have also been reported. Excellent simulations of the σ curves obtained previously for V + generated by surface ionization at 1800–2200 K can be achieved by the linear combination of the σ (a 5 D J , a 5 F J , and a 3 F J ) curves weighted by the corresponding Boltzmann populations of the electronic states. In addition to serving as a strong validation of the thermal equilibrium assumption for the populations of the V + electronic states in the hot filament ionization source, the agreement between these results also confirmed that the V + (a 5 D J , a 5 F J , and a 3 F J ) states prepared in this experiment are in single spin–orbit states with 100% purity. 
    more » « less
  2. Abstract

    Neutron-induced nuclear reactions play an important role in the Big Bang Nucleosynthesis. Their excitation functions are, from an experimental point of view, usually difficult to measure. Nevertheless, in the last decades, big efforts have led to a better understanding of their role in the primordial nucleosynthesis network. In this work, we apply the Trojan Horse Method to extract the cross section at astrophysical energies for the3He(n,p)3H reaction after a detailed study of the2H(3He,pt)H three-body process. Data extracted from the present measurement are compared with other published sets. The reaction rate is also calculated, and the impact on the Big Bang nucleosynthesis is examined in detail.

     
    more » « less
  3. Abstract

    The absolute total cross sections for the charge exchange between highly charged ions15N7+, O7+, and atomic H have been measured with the ion-atom merged-beams apparatus at Oak Ridge National Laboratory. The collision energy range is from 1224 down to 2 eV u−1, which covers outflowing hot components of astrophysical charge exchange plasmas like stellar-wind and supernova remnants. Good agreement with the previous measurements and theory is found for the collision energies above 100 eV u−1, while below 100 eV u−1limited agreement is achieved with the available calculations. These cross-section data are useful for modeling X-ray emission resulting from the charge exchange at the interface of hot plasma interacting with ambient neutral gas.

     
    more » « less
  4. The RSSH + H 2 S → RSH + HSSH reaction has been suggested by numerous labs to be important in H 2 S-mediated biological processes. Seven different mechanisms for this reaction (R = CH 3 , as a model) have been studied using the DFT methods (M06-2X and ωB97X-D) with the Dunning aug-cc-pV(T+d)Z basis sets. The reaction of CH 3 SSH with gas phase H 2 S has a very high energy barrier (>45 kcal mol −1 ), consistent with the available experimental observations. A series of substitution reactions R 1 –S–S–H + − S–R 2 (R 1 = Me, t Bu, Ad, R 2 = H, S–Me, S– t Bu, S–Ad) have been studied. The regioselectivity is largely affected by the steric bulkiness of R 1 , but is much less sensitive to R 2 . Thus, when R 1 is Me, all − S–R 2 favorably attack the internal S atom, leading to R 1 –S–S–R 2 . While for R 1 = t Bu, Ad, all − S–R 2 significantly prefer to attack the external S atom to form − S–S–R 2 . These results are in good agreement with the experimental observations. 
    more » « less
  5. The ion implantation of H+and D+into Ga2O3produces several O–H and O–D centers that have been investigated by vibrational spectroscopy. These defects include the dominant VGa(1)-2H and VGa(1)-2D centers studied previously along with additional defects that can be converted into this structure by thermal annealing. The polarization dependence of the spectra has also been analyzed to determine the directions of the transition moments of the defects and to provide information about defect structure. Our experimental results show that the implantation of H+(or D+) into Ga2O3produces two classes of defects with different polarization properties. Theory finds that these O–H (or O–D) centers are based on two shifted configurations of a Ga(1) vacancy that trap H (or D) atom(s). The interaction of VGa(1)-nD centers with other defects in the implanted samples has also been investigated to help explain the number of O–D lines seen and their reactions upon annealing. Hydrogenated divacancy VGa(1)-VOcenters have been considered as an example.

     
    more » « less