Matrix low rank approximation is an effective method to reduce or eliminate the statistical redundancy of its components. Compared with the traditional global low rank methods such as singular value decomposition (SVD), local low rank approximation methods are more advantageous to uncover interpretable data structures when clear duality exists between the rows and columns of the matrix. Local low rank approximation is equivalent to low rank submatrix detection. Unfortunately,existing local low rank approximation methods can detect only submatrices of specific mean structure, which may miss a substantial amount of true and interesting patterns. In this work, we develop a novel matrix computational framework called RPSP (Random Probing based submatrix Propagation) that provides an effective solution for the general matrix local low rank representation problem. RPSP detects local low rank patterns that grow from small submatrices of low rank property, which are determined by a random projection approach. RPSP is supported by theories of random projection. Experiments on synthetic data demonstrate that RPSP outperforms all state-of-the-art methods, with the capacity to robustly and correctly identify the low rank matrices when the pattern has a similar mean as the background, background noise is heteroscedastic and multiple patterns present in the data. On real-world datasets, RPSP also demonstrates its effectiveness in identifying interpretable local low rank matrices.
more »
« less
Mining Order-preserving Submatrices under Data Uncertainty: A Possible-world Approach and Efficient Approximation Methods
Given a data matrix 𝐷, a submatrix 𝑆 of 𝐷 is an order-preserving submatrix (OPSM) if there is a permutation of the columns of 𝑆, under which the entry values of each row in 𝑆 are strictly increasing. OPSM mining is widely used in real-life applications such as identifying coexpressed genes and finding customers with similar preference. However, noise is ubiquitous in real data matrices due to variable experimental conditions and measurement errors, which makes conventional OPSM mining algorithms inapplicable. No previous work on OPSM has ever considered uncertain value intervals using the well-established possible world semantics. We establish two different definitions of significant OPSMs based on the possible world semantics: (1) expected support-based and (2) probabilistic frequentness-based. An optimized dynamic programming approach is proposed to compute the probability that a row supports a particular column permutation, with a closed-form formula derived to efficiently handle the special case of uniform value distribution and an accurate cubic spline approximation approach that works well with any uncertain value distributions. To efficiently check the probabilistic frequentness, several effective pruning rules are designed to efficiently prune insignificant OPSMs; two approximation techniques based on the Poisson and Gaussian distributions, respectively, are proposed for further speedup. These techniques are integrated into our two OPSM mining algorithms, based on prefix-projection and Apriori, respectively. We further parallelize our prefix-projection-based mining algorithm using PrefixFPM, a recently proposed framework for parallel frequent pattern mining, and we achieve a good speedup with the number of CPU cores. Extensive experiments on real microarray data demonstrate that the OPSMs found by our algorithms have a much higher quality than those found by existing approaches.
more »
« less
- Award ID(s):
- 1755464
- PAR ID:
- 10331918
- Date Published:
- Journal Name:
- ACM transactions on database systems
- ISSN:
- 0362-5915
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A frequent pattern is a substructure that appears in a database with frequency (aka. support) no less than a user-specified threshold, while a closed pattern is one that has no super-pattern that has the same support. Here, a substructure can refer to different structural forms, such as itemsets, subsequences, subtrees, and subgraphs, and mining such substructures is important in many real applications such as product recommendation and feature extraction. Currently, there lacks a general programming framework that can be easily customized to mine different types of patterns, and existing parallel and distributed solutions are IO-bound rendering CPU cores underutilized. Since mining frequent and/or closed patterns are NP-hard, it is important to fully utilize the available CPU cores. This paper presents such a general-purpose framework called PrefixFPM. The framework is based on the idea of prefix projection which allows a divide-and-conquer mining paradigm. PrefixFPM exposes a unified programming interface to users who can readily customize it to mine their desired patterns. We have adapted the state-of-the-art serial algorithms for mining patterns including subsequences, subtrees, and subgraphs on top of PrefixFPM, and extensive experiments demonstrate an excellent speedup ratio of PrefixFPM with the number of CPU cores.more » « less
-
We implement two novel algorithms for sparse-matrix dense-matrix multiplication (SpMM) on the GPU. Our algorithms expect the sparse input in the popular compressed-sparse-row (CSR) format and thus do not require expensive format conversion. While previous SpMM work concentrates on thread-level parallelism, we additionally focus on latency hiding with instruction-level parallelism and load-balancing. We show, both theoretically and experimentally, that the proposed SpMM is a better fit for the GPU than previous approaches. We identify a key memory access pattern that allows efficient access into both input and output matrices that is crucial to getting excellent performance on SpMM. By combining these two ingredients---(i) merge-based load-balancing and (ii) row-major coalesced memory access---we demonstrate a 4.1x peak speedup and a 31.7% geomean speedup over state-of-the-art SpMM implementations on real-world datasets.more » « less
-
Inference of unknown opinions with uncertain, adversarial (e.g., incorrect or conflicting) evidence in large datasets is not a trivial task. Without proper handling, it can easily mislead decision making in data mining tasks. In this work, we propose a highly scalable opinion inference probabilistic model, namely Adversarial Collective Opinion Inference (Adv-COI), which provides a solution to infer unknown opinions with high scalability and robustness under the presence of uncertain, adversarial evidence by enhancing Collective Subjective Logic (CSL) which is developed by combining SL and Probabilistic Soft Logic (PSL). The key idea behind the Adv-COI is to learn a model of robust ways against uncertain, adversarial evidence which is formulated as a min-max problem. We validate the out-performance of the Adv-COI compared to baseline models and its competitive counterparts under possible adversarial attacks on the logic-rule based structured data and white and black box adversarial attacks under both clean and perturbed semi-synthetic and real-world datasets in three real world applications. The results show that the Adv-COI generates the lowest mean absolute error in the expected truth probability while producing the lowest running time among all.more » « less
-
Frequent pattern mining (FPM) has been a focused theme in data mining research for decades, but there lacks a general programming framework that can be easily customized to mine different kinds of frequent patterns, and existing solutions to FPM over big transaction databases are IO-bound rendering CPU cores underutilized even though FPM is NP-hard. This paper presents, PrefixFPM, a general-purpose framework for FPM that is able to fully utilize the CPU cores in a multicore machine. PrefixFPM follows the idea of prefix projection to partition the workloads of PFM into independent tasks by divide and conquer. PrefixFPM exposes a unified programming interface to users who can customize it to mine their desired patterns, and the parallel execution engine is transparent to end-users and can be reused for mining all kinds of patterns. We have adapted the state-of-the-art serial algorithms for mining frequent patterns including subsequences, subtrees, and subgraphs on top of PrefixFPM, and extensive experiments demonstrate an excellent speedup ratio of PrefixFPM with the number of cores. A demo is available at https://youtu.be/PfioC0GDpsw; the code is available at https://github.com/yanlab19870714/PrefixFPM.more » « less
An official website of the United States government

