skip to main content

Title: Time-sensitive POI Recommendation by Tensor Completion with Side Information
Context has been recognized as an important factor to consider in personalized recommender systems. Particularly in location-based services (LBSs), a fundamental task is to recommend to a mobile user where he/she could be interested to visit next at the right time. Additionally, location-based social networks (LBSNs) allow users to share location-embedded information with friends who often co-occur in the same or nearby points-of-interest (POIs) or share similar POI visiting histories, due to the social homophily theory and Tobler’s first law of geography. So, both the time information and LBSN friendship relations should be utilized for POI recommendation. Tensor completion has recently gained some attention in time-aware recommender systems. The problem decomposes a user-item-time tensor into low-rank embedding matrices of users, items and times using its observed entries, so that the underlying low-rank subspace structure can be tracked to fill the missing entries for time-aware recommendation. However, these tensor completion methods ignore the social-spatial context information available in LBSNs, which is important for POI recommendation since people tend to share their preferences with their friends, and near things are more related than distant things. In this paper, we utilize the side information of social networks and POI locations to enhance the tensor more » completion model paradigm for more effective time-aware POI recommendation. Specifically, we propose a regularization loss head based on a novel social Hausdorff distance function to optimize the reconstructed tensor. We also quantify the popularity of different POIs with location entropy to prevent very popular POIs from being over-represented hence suppressing the appearance of other more diverse POIs. To address the sensitivity of negative sampling, we train the model on the whole data by treating all unlabeled entries in the observed tensor as negative, and rewriting the loss function in a smart way to reduce the computational cost. Through extensive experiments on real datasets, we demonstrate the superiority of our model over state-of-the-art tensor completion methods. « less
Authors:
; ;
Award ID(s):
1755464
Publication Date:
NSF-PAR ID:
10331958
Journal Name:
Proceedings of the 38th IEEE International Conference on Data Engineering (ICDE)
Sponsoring Org:
National Science Foundation
More Like this
  1. Point of interest (POI) recommendation, which provides personalized recommendation of places to mobile users, is an important task in location-based social networks (LBSNs). However, quite different from traditional interest-oriented merchandise recommendation, POI recommendation is more complex due to the timing effects: we need to examine whether the POI fits a user’s availability. While there are some prior studies which included the temporal effect into POI recommendations, they overlooked the compatibility between time-varying popularity of POIs and regular availability of users, which we believe has a non-negligible impact on user decision-making. To this end, in this paper, we present a novel method which incorporates the degree of temporal matching between users and POIs into personalized POI recommendations. Specifically, we first profile the temporal popularity of POIs to show when a POI is popular for visit by mining the spatio-temporal human mobility and POI category data. Secondly, we propose latent user regularities to characterize when a user is regularly available for exploring POIs, which is learned with a user-POI temporal matching function. Finally, results of extensive experiments with real-world POI check-in and human mobility data demonstrate that our proposed user-POI temporal matching method delivers substantial advantages over baseline models for POI recommendationmore »tasks.« less
  2. Matrix completion is a well-known approach for recommender systems. It predicts the values of the missing entries in a sparse user-item interaction matrix, based on the low-rank structure of the rating matrix. However, existing matrix completion methods do not take node polysemy and side information of social relationships into consideration, which can otherwise further improve the performance. In this paper, we propose a novel matrix completion method that employs both users’ friendships and rating entries to predict the missing values in a user-item matrix. Our approach adopts a graph-based modeling where nodes are users and items, and two types of edges are considered: user friendships and user-item interactions. Polysemy-aware node features are extracted from this heterogeneous graph through a graph convolution network by considering the multifaceted factors for edge formation, which are then connected to a hybrid loss function with two heads: (1) a social-homophily head to address node polysemy, and (2) an error head for user-item rating regression. The latter is formulated on all matrix entries to combat the sensitivity of negative sampling of the vast majority of missing entries during training, with a smart technique to reduce the time complexity. Extensive experiments over real datasets verify that ourmore »model outperforms the state-of-the-art matrix completion methods by a significant margin.« less
  3. Point-of-interest (POI) recommendation is essential to a variety of services for both users and business. An extensive number of models have been developed to improve the recommendation performance by exploiting various characteristics and relations among POIs (e.g., spatio-temporal, social, etc.). However, very few studies closely look into the underlying mechanism accounting for why users prefer certain POIs to others. In this work, we initiate the first attempt to learn the distribution of user latent preference by proposing an Adversarial POI Recommendation (APOIR) model, consisting of two major components: (1) the recommender (R) which suggests POIs based on the learned distribution by maximizing the probabilities that these POIs are predicted as unvisited and potentially interested; and (2) the discriminator (D) which distinguishes the recommended POIs from the true check-ins and provides gradients as the guidance to improve R in a rewarding framework. Two components are co-trained by playing a minimax game towards improving itself while pushing the other to the boundary. By further integrating geographical and social relations among POIs into the reward function as well as optimizing R in a reinforcement learning manner, APOIR obtains significant performance improvement in four standard metrics compared to the state of the art methods.
  4. The main objective of Personalized Tour Recommendation (PTR) is to generate a sequence of point-of-interest (POIs) for a particular tourist, according to the user-specific constraints such as duration time, start and end points, the number of attractions planned to visit, and so on. Previous PTR solutions are based on either heuristics for solving the orienteering problem to maximize a global reward with a specified budget or approaches attempting to learn user visiting preferences and transition patterns with the stochastic process or recurrent neural networks. However, existing learning methodologies rely on historical trips to train the model and use the next visited POI as the supervised signal, which may not fully capture the coherence of preferences and thus recommend similar trips to different users, primarily due to the data sparsity problem and long-tailed distribution of POI popularity. This work presents a novel tour recommendation model by distilling knowledge and supervision signals from the trips in a self-supervised manner. We propose Contrastive Trajectory Learning for Tour Recommendation (CTLTR), which utilizes the intrinsic POI dependencies and traveling intent to discover extra knowledge and augments the sparse data via pre-training auxiliary self-supervised objectives. CTLTR provides a principled way to characterize the inherent data correlationsmore »while tackling the implicit feedback and weak supervision problems by learning robust representations applicable for tour planning. We introduce a hierarchical recurrent encoder-decoder to identify tourists’ intentions and use the contrastive loss to discover subsequence semantics and their sequential patterns through maximizing the mutual information. Additionally, we observe that a data augmentation step as the preliminary of contrastive learning can solve the overfitting issue resulting from data sparsity. We conduct extensive experiments on a range of real-world datasets and demonstrate that our model can significantly improve the recommendation performance over the state-of-the-art baselines in terms of both recommendation accuracy and visiting orders.« less
  5. As the popularity of online travel platforms increases, users tend to make ad-hoc decisions on places to visit rather than preparing the detailed tour plans in advance. Under the situation of timeliness and uncertainty of users’ demand, how to integrate real-time context into a dynamic and personalized recommendations have become a key issue in travel recommender system. In this paper, by integrating the users’ historical preferences and real-time context, a location-aware recommender system called TRACE (Travel Reinforcement Recommendations Based on Location-Aware Context Extraction) is proposed. It captures users’ features based on location-aware context learning model, and makes dynamic recommendations based on reinforcement learning. Specifically, this research: (1) designs a travel reinforcing recommender system based on an Actor-Critic framework, which can dynamically track the user preference shifts and optimize the recommender system performance; (2) proposes a location-aware context learning model, which aims at extracting user context from real-time location and then calculating the impacts of nearby attractions on users’ preferences; and (3) conducts both offline and online experiments. Our proposed model achieves the best performance in both of the two experiments, which demonstrates that tracking the users’ preference shifts based on real-time location is valuable for improving the recommendation results.