skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temporal Analysis of Epidemiology indicators and Air Travel Data for Covid-19
Coronavirus Disease 2019 (Covid-19) is an ongoing outbreak and the latest threat to global health. It is imperative to understand the implications of social interaction on Covid-19 indicators in order to help formulate policies and guidelines by governments and local authorities. We present a case-study of curating state-level Covid-19 indicators such as Active Cases, Deaths, Hospitalization Rate, etc. for the United States. We also curate open source domestic US air travel data and present its impact on Covid-19 indicators. We perform a time-series analysis of the dataset using Independent Temporal Motif (ITeM) to find weekly trends in the data. We publish the dataset and the results for further exploration by the research community.  more » « less
Award ID(s):
1757632
PAR ID:
10332036
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
SIAM Conference on Applied and Computational Discrete Algorithms
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We examine the uneven social and spatial distributions of COVID-19 and their relationships with indicators of social vulnerability in the U.S. epicenter, New York City (NYC). As of July 17th, 2020, NYC, despite having only 2.5% of the U.S. population, has [Formula: see text]6% of all confirmed cases, and [Formula: see text]16% of all deaths, making it a key learning ground for the social dynamics of the disease. Our analysis focuses on the multiple potential social, economic, and demographic drivers of disproportionate impacts in COVID-19 cases and deaths, as well as population rates of testing. Findings show that immediate impacts of COVID-19 largely fall along lines of race and class. Indicators of poverty, race, disability, language isolation, rent burden, unemployment, lack of health insurance, and housing crowding all significantly drive spatial patterns in prevalence of COVID-19 testing, confirmed cases, death rates, and severity. Income in particular has a consistent negative relationship with rates of death and disease severity. The largest differences in social vulnerability indicators are also driven by populations of people of color, poverty, housing crowding, and rates of disability. Results highlight the need for targeted responses to address injustice of COVID-19 cases and deaths, importance of recovery strategies that account for differential vulnerability, and provide an analytical approach for advancing research to examine potential similar injustice of COVID-19 in other U.S. cities. Significance Statement Communities around the world have variable success in mitigating the social impacts of COVID-19, with many urban areas being hit particularly hard. Analysis of social vulnerability to COVID-19 in the NYC, the U.S. national epicenter, shows strongly disproportionate impacts of the pandemic on low income populations and communities of color. Results highlight the class and racial inequities of the coronavirus pandemic in NYC, and the need to unpack the drivers of social vulnerability. To that aim, we provide a replicable framework for examining patterns of uneven social vulnerability to COVID-19- using publicly available data which can be readily applied in other study regions, especially within the U.S.A. This study is important to inform public and policy debate over strategies for short- and long-term responses that address the injustice of disproportionate impacts of COVID-19. Although similar studies examining social vulnerability and equity dimensions of the COVID-19 outbreak in cities across the U.S. have been conducted (Cordes and Castro 2020, Kim and Bostwick 2002, Gaynor and Wilson 2020; Wang et al. 2020; Choi and Unwin 2020), this study provides a more comprehensive analysis in NYC that extends previous contributions to use the highest resolution spatial units for data aggregation (ZCTAs). We also include mortality and severity rates as key indicators and provide a replicable framework that draws from the Centers for Disease Control and Prevention’s Social Vulnerability indicators for communities in NYC. 
    more » « less
  2. Turner, Richard (Ed.)
    Background With the availability of multiple Coronavirus Disease 2019 (COVID-19) vaccines and the predicted shortages in supply for the near future, it is necessary to allocate vaccines in a manner that minimizes severe outcomes, particularly deaths. To date, vaccination strategies in the United States have focused on individual characteristics such as age and occupation. Here, we assess the utility of population-level health and socioeconomic indicators as additional criteria for geographical allocation of vaccines. Methods and findings County-level estimates of 14 indicators associated with COVID-19 mortality were extracted from public data sources. Effect estimates of the individual indicators were calculated with univariate models. Presence of spatial autocorrelation was established using Moran’s I statistic. Spatial simultaneous autoregressive (SAR) models that account for spatial autocorrelation in response and predictors were used to assess (i) the proportion of variance in county-level COVID-19 mortality that can explained by identified health/socioeconomic indicators (R 2 ); and (ii) effect estimates of each predictor. Adjusting for case rates, the selected indicators individually explain 24%–29% of the variability in mortality. Prevalence of chronic kidney disease and proportion of population residing in nursing homes have the highest R 2 . Mortality is estimated to increase by 43 per thousand residents (95% CI: 37–49; p < 0.001) with a 1% increase in the prevalence of chronic kidney disease and by 39 deaths per thousand (95% CI: 34–44; p < 0.001) with 1% increase in population living in nursing homes. SAR models using multiple health/socioeconomic indicators explain 43% of the variability in COVID-19 mortality in US counties, adjusting for case rates. R 2 was found to be not sensitive to the choice of SAR model form. Study limitations include the use of mortality rates that are not age standardized, a spatial adjacency matrix that does not capture human flows among counties, and insufficient accounting for interaction among predictors. Conclusions Significant spatial autocorrelation exists in COVID-19 mortality in the US, and population health/socioeconomic indicators account for a considerable variability in county-level mortality. In the context of vaccine rollout in the US and globally, national and subnational estimates of burden of disease could inform optimal geographical allocation of vaccines. 
    more » « less
  3. null (Ed.)
    Abstract Objective This study aims at reviewing novel coronavirus disease (COVID-19) datasets extracted from PubMed Central articles, thus providing quantitative analysis to answer questions related to dataset contents, accessibility and citations. Methods We downloaded COVID-19-related full-text articles published until 31 May 2020 from PubMed Central. Dataset URL links mentioned in full-text articles were extracted, and each dataset was manually reviewed to provide information on 10 variables: (1) type of the dataset, (2) geographic region where the data were collected, (3) whether the dataset was immediately downloadable, (4) format of the dataset files, (5) where the dataset was hosted, (6) whether the dataset was updated regularly, (7) the type of license used, (8) whether the metadata were explicitly provided, (9) whether there was a PubMed Central paper describing the dataset and (10) the number of times the dataset was cited by PubMed Central articles. Descriptive statistics about these seven variables were reported for all extracted datasets. Results We found that 28.5% of 12 324 COVID-19 full-text articles in PubMed Central provided at least one dataset link. In total, 128 unique dataset links were mentioned in 12 324 COVID-19 full text articles in PubMed Central. Further analysis showed that epidemiological datasets accounted for the largest portion (53.9%) in the dataset collection, and most datasets (84.4%) were available for immediate download. GitHub was the most popular repository for hosting COVID-19 datasets. CSV, XLSX and JSON were the most popular data formats. Additionally, citation patterns of COVID-19 datasets varied depending on specific datasets. Conclusion PubMed Central articles are an important source of COVID-19 datasets, but there is significant heterogeneity in the way these datasets are mentioned, shared, updated and cited. 
    more » « less
  4. Abstract Coronavirus SARS-COV-2 infections continue to spread across the world, yet effective large-scale disease detection and prediction remain limited. COVID Control: A Johns Hopkins University Study, is a novel syndromic surveillance approach, which collects body temperature and COVID-like illness (CLI) symptoms across the US using a smartphone app and applies spatio-temporal clustering techniques and cross-correlation analysis to create maps of abnormal symptomatology incidence that are made publicly available. The results of the cross-correlation analysis identify optimal temporal lags between symptoms and a range of COVID-19 outcomes, with new taste/smell loss showing the highest correlations. We also identified temporal clusters of change in taste/smell entries and confirmed COVID-19 incidence in Baltimore City and County. Further, we utilized an extended simulated dataset to showcase our analytics in Maryland. The resulting clusters can serve as indicators of emerging COVID-19 outbreaks, and support syndromic surveillance as an early warning system for disease prevention and control. 
    more » « less
  5. In 2020, the White House released the “Call to Action to the Tech Community on New Machine Readable COVID-19 Dataset,” wherein artificial intelligence experts are asked to collect data and develop text mining techniques that can help the science community answer high-priority scientific questions related to COVID-19. The Allen Institute for AI and collaborators announced the availability of a rapidly growing open dataset of publications, the COVID-19 Open Research Dataset (CORD-19). As the pace of research accelerates, biomedical scientists struggle to stay current. To expedite their investigations, scientists leverage hypothesis generation systems, which can automatically inspect published papers to discover novel implicit connections. We present automated general purpose hypothesis generation systems AGATHA-C and AGATHA-GP for COVID-19 research. The systems are based on the graph mining and transformer models. The systems are massively validated using retrospective information rediscovery and proactive analysis involving human-in-the-loop expert analysis. Both systems achieve high-quality predictions across domains in fast computational time and are released to the broad scientific community to accelerate biomedical research. In addition, by performing the domain expert curated study, we show that the systems are able to discover ongoing research findings such as the relationship between COVID-19 and oxytocin hormone.All code, details, and pre-trained models are available at https://github.com/IlyaTyagin/AGATHA-C-GP. 
    more » « less