Abstract Non‐spherical stimuli‐responsive polymeric particles have shown critical importance in therapeutic delivery. Herein, pH‐responsive poly(methacrylic acid) (PMAA) cubic hydrogel microparticles are synthesized by crosslinking PMAA layers within PMAA/poly(N‐vinylpyrrolidone) hydrogen‐bonded multilayers templated on porous inorganic microparticles. This study investigates the effects of template porosity and surface morphology on the PMAA multilayer hydrogel microcube properties. It is found that the hydrogel structure depends on the template's calcination time and temperature. The pH‐triggered PMAA hydrogel cube swelling depends on the hydrogel's internal architecture, either hollow capsule‐like or non‐hollow continuous hydrogels. The loading efficiency of the doxorubicin (DOX) drug inside the microcubes is analyzed by high‐performance liquid chromatography (HPLC), and shows the dependenceof the drug uptake on the network structure and morphology controlled by the template porosity. Varying the template calcination from low (300 °C) to high (1000 °C) temperature results in a 2.5‐fold greater DOX encapsulation by the hydrogel cubes. The effects of hydrogel surface charge on the DOX loading and release are also studied using zeta‐potential measurements. This work provides insight into the effect of structural composition, network morphology, and pH‐induced swelling of the cubical hydrogels and may advance the development of stimuli‐responsive vehicles for targeted anticancer drug delivery.
more »
« less
Free-Standing Thin Hydrogels: Effects of Composition and pH-Dependent Hydration on Mechanical Properties
We developed an approach to obtain nanothin freefloating poly(methacrylic acid) (PMAA) hydrogel films through the dissolution of a sacrificial SiO2 layer. The hydrogel films were produced by chemical crosslinking of PMAA in PMAA/poly(Nvinylpyrrolidone) (PVPON) hydrogen-bonded precursors assembled through spin-assisted (SA) multilayer assembly. Surfaceanchored precursor films and hydrogels were released from silicon templates into an aqueous solution via etching the thick sacrificial SiO2 layer from the templates. We studied the impact of the release method on the surface morphology, thickness, and elasticity of the released (PMAA/PVPON)60 and (PMAA)60 films using atomic force microscopy (AFM) and demonstrated that these properties were affected neither by the film release nor by their following transfer onto Si wafers. We found that 16 h crosslinked (PMAA)60 hydrogels and their more swollen 8 h crosslinked counterparts (76% hydration at pH = 5) produced free-floating films with good mechanical integrity and strength. The elastic moduli of a 16 h crosslinked (PMAA)60 film decreased from 1.9 ± 0.1 GPa in the dry state to 77 ± 13 MPa at pH = 5 and then to 14 ± 3 MPa at pH = 6.5. We also showed that incorporating Zr(IV) into twice thinner (PMAA)30 hydrogels (∼60 nm dry thickness) improved film mechanical robustness and allowed their successful release and transfer onto Si wafers. In contrast, Zr-free (PMAA)30 were less tolerant to the release/transfer procedure due to mechanical fragility. The temporary coordination links between Zr(IV) and the hydrogel could be removed from the network by an EDTA chelator. The lift-off approach developed here is simple, versatile, and applicable to a wide range of polymer films. The free-floating hydrogels obtained by this method can be used as transferrable platforms to develop lab-on-a-chip systems, nanocomposite pressure sensing platforms, rapid optical biosensors, and responsive platforms for regulating cell adhesion and more effective cell sheet recoveries.
more »
« less
- Award ID(s):
- 1904816
- PAR ID:
- 10332166
- Date Published:
- Journal Name:
- ACS applied polymer materials
- Volume:
- 3
- Issue:
- 8
- ISSN:
- 2637-6105
- Page Range / eLocation ID:
- 3960–3971
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Two-Dimensional and Three-Dimensional Ultrathin Multilayer Hydrogels through Layer-by-Layer AssemblyStimuli-responsive multilayer hydrogels have opened new opportunities to design hierarchically organized networks with properties controlled at the nanoscale. These multilayer materials integrate structural, morphological, and compositional versatility provided by alternating layer-bylayer polymer deposition with the capability for dramatic and reversible changes in volumes upon environmental triggers, a characteristic of chemically crosslinked responsive networks. Despite their intriguing potential, there has been limited knowledge about the structure−property relationships of multilayer hydrogels, partly because of the challenges in regulating network structural organization and the limited set of the instrumental pool to resolve structure and properties at nanometer spatial resolution. This Feature Article highlights our recent studies on advancing assembly technologies, fundamentals, and applications of multilayer hydrogels. The fundamental relationships among synthetic strategies, chemical compositions, and hydrogel architectures are discussed, and their impacts on stimuli-induced volume changes, morphology, and mechanical responses are presented. We present an overview of our studies on thin multilayer hydrogel coatings, focusing on controlling and quantifying the degree of layer intermixing, which are crucial issues in the design of hydrogels with predictable properties. We also uncover the behavior of stratified “multicompartment” hydrogels in response to changes in pH and temperature. We summarize the mechanical responses of free-standing multilayer hydrogels, including planar thin coatings and films with closed geometries such as hollow microcapsules and nonhollow hydrogel microparticles with spherical and nonspherical shapes. Finally, we will showcase potential applications of pH- and temperature-sensitive multilayer hydrogels in sensing and drug delivery. The knowledge about multilayer hydrogels can advance the rational design of polymer networks with predictable and well-tunable properties, contributing to modern polymer science and broadening hydrogel applications.more » « less
-
null (Ed.)This work establishes a correlation between the selectivity of hydrogen-bonding interactions and the functionality of micelle-containing layer-by-layer (LbL) assemblies. Specifically, we explore LbL films formed by assembly of poly(methacrylic acid) (PMAA) and upper critical solution temperature block copolymer micelles (UCSTMs) composed of poly(acrylamide- co -acrylonitrile) P(AAm- co -AN) cores and polyvinylpyrrolidone (PVP) coronae. UCSTMs had a hydrated diameter of ∼380 nm with a transition temperature between 45 and 50 °C, regardless of solution pH. Importantly, micelles were able to hydrogen-bond with PMAA, with the critical interaction pH being temperature dependent. To better understand the thermodynamic nature of these interactions, in depth studies using isothermal titration calorimetry (ITC) were conducted. ITC reveals opposite signs of enthalpies for binding of PMAA with micellar coronae vs. with the cores. Moreover, ITC indicates that pH directs the interactions of PMAA with micelles, selectively enabling binding with the micellar corona at pH 4 or with both the corona and the core at pH 3. We then explore UCSTM/PMAA LbL assemblies and show that the two distinct modes of PMAA interaction with the micelles ( i.e. whether or not PMAA binds with the core) had significant effects on the film composition, structure, and functionality. Consistent with PMAA hydrogen bonding with the P(AAm- co -AN) micellar cores, a significantly higher fraction of PMAA was found within the films assembled at pH 3 compared to pH 4 by both spectroscopic ellipsometry and neutron reflectometry. Selective interaction of PMAA with PVP coronae of the assembled micelles, achieved by the emergence of partial ionization of PMAA at pH 4 was critical for preserving film functionality demonstrated as temperature-controlled swelling and release of a model small molecule, pyrene. The work done here can be applied to a multitude of assembled polymer systems in order to predict suppression/retention of their stimuli-responsive behavior.more » « less
-
Crack initiation stresses for different lead zirconate titanate (PZT) film compositions were investigated. PZT/Pt/TiO 2 /SiO 2 /Si stacks with 2.0 μm thick {100} oriented PZT films at the morphotropic phase boundary (MPB) showed a characteristic strength of 1137 MPa, and the film thickness served as the limiting flaw size for failure of the film/substrate stack. In contrast, for Zr/Ti ratios of 40/60 and 30/70, the characteristic stack strength increased while the Weibull modulus decreased to values typical for that of Si. This difference is believed to be due to toughening from ferroelasticity or phase switching. X-ray diffraction showed that the volume fraction of c-domains increased in Ti-rich compositions. This would allow for more switching from c to a-domains under biaxial tensile stress. Zr/Ti concentration gradients were present for all compositions, which contributed to the observation of a rhombohedral phase off the MPB. Due to the reduced tendency toward cracking, off-MPB compositions are potentially of interest in actuators, albeit with the trade-off of needing a high actuation voltage.more » « less
-
We report the growth of nanoscale hafnium dioxide (HfO2) and zirconium dioxide (ZrO2) thin films using remote plasma-enhanced atomic layer deposition (PE-ALD), and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using the HfO2 and ZrO2 thin films as the gate oxide. Tetrakis (dimethylamino) hafnium (Hf[N(CH3)2]4) and tetrakis (dimethylamino) zirconium (IV) (Zr[N(CH3)2]4) were used as the precursors, while O2 gas was used as the reactive gas. The PE-ALD-grown HfO2 and ZrO2 thin films were analyzed using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). The XPS measurements show that the ZrO2 film has the atomic concentrations of 34% Zr, 2% C, and 64% O while the HfO2 film has the atomic concentrations of 29% Hf, 11% C, and 60% O. The HRTEM and XRD measurements show both HfO2 and ZrO2 films have polycrystalline structures. n-channel and p-channel metal-oxide semiconductor field-effect transistors (nFETs and pFETs), CMOS inverters, and CMOS ring oscillators were fabricated to test the quality of the HfO2 and ZrO2 thin films as the gate oxide. Current-voltage (IV) curves, transfer characteristics, and oscillation waveforms were measured from the fabricated transistors, inverters, and oscillators, respectively. The experimental results measured from the HfO2 and ZrO2 thin films were compared.more » « less
An official website of the United States government

