skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: REFORM: Fast and Adaptive Solution for Subteam Replacement
Subteam Replacement: given a team of people em- bedded in a social network to complete a certain task, and a subset of members (i.e., subteam) in this team which have become unavailable, find another set of people who can perform the subteam’s role in the larger team. We conjecture that a good candidate subteam should have high skill and structural similarity with the replaced subteam while sharing a similar connection with the larger team as a whole. Based on this conjecture, we propose a novel graph kernel which evaluates the goodness of candidate subteams in this holistic way freely adjustable to the need of the situation. To tackle the significant computational difficulties, we equip our kernel with a fast approximation algorithm which (a) employs effective pruning strategies, (b) exploits the similarity between candidate team structures to reduce kernel computations, and (c) features a solid theoretical bound on the quality of the obtained solution. We extensively test our solution on both synthetic and real datasets to demonstrate its effectiveness and efficiency. Our proposed graph kernel outputs more human-agreeable recommendations compared to metrics used in previous work, and our algorithm consistently outperforms alternative choices by finding near- optimal solutions while scaling linearly with the size of the replaced subteam.  more » « less
Award ID(s):
1939725 1947135
PAR ID:
10332508
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
REFORM: Fast and Adaptive Solution for Subteam Replacement
Page Range / eLocation ID:
350 to 358
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the top-k set similarity search problem using semantic overlap. While vanilla overlap requires exact matches between set elements, semantic overlap allows elements that are syntactically different but semantically related to increase the overlap. The semantic overlap is the maximum matching score of a bipartite graph, where an edge weight between two set elements is defined by a user-defined similarity function, e.g., cosine similarity between embeddings. Common techniques like token indexes fail for semantic search since similar elements may be unrelated at the character level. Further, verifying candidates is expensive (cubic versus linear for syntactic overlap), calling for highly selective filters. We propose Koios, the first exact and efficient algorithm for semantic overlap search. Koios leverages sophisticated filters to minimize the number of required graph-matching calculations. Our experiments show that for medium to large sets less than 5% of the candidate sets need verification, and more than half of those sets are further pruned without requiring the expensive graph matching. We show the efficiency of our algorithm on four real datasets and demonstrate the improved result quality of semantic over vanilla set similarity search. 
    more » « less
  2. State-of-the-art in network science of teams offers effective recommendation methods to answer questions like who is the best replacement, what is the best team expansion strategy, but lacks intuitive ways to explain why the optimization algorithm gives the specific recommendation for a given team optimization scenario. To tackle this problem, we develop an interactive prototype system, Extra, as the first step towards addressing such a sense-making challenge, through the lens of the underlying network where teams embed, to explain the team recommendation results. The main advantages are (1) Algorithm efficacy: we propose an effective and fast algorithm to explain random walk graph kernel, the central technique for networked team recommendation; (2) Intuitive visual explanation: we present intuitive visual analysis of the recommendation results, which can help users better understand the rationality of the underlying team recommendation algorithm. 
    more » « less
  3. In this paper, we study the team expansion problem in collaborative environments where people collaborate with each other in the form of a team, which might need to be expanded frequently by having additional team members during the course of the project. Intuitively, there are three factors as well as the interactions between them that have a profound impact on the performance of the expanded team, including (1) the task the team is performing, (2) the existing team members, and (3) the new candidate team member. However, the vast majority of the existing work either considers these factors separately, or even ignores some of these factors. In this paper, we propose a neural network based approach TECE to simultaneously model the interactions between the team task, the team members as well as the candidate team members. Experimental evaluations on real-world datasets demonstrate the effectiveness of the proposed approach. 
    more » « less
  4. Physical systems are extending their monitoring capacities to edge areas with low-cost, low-power sensors and advanced data mining and machine learning techniques. However, new systems often have limited data for training the model, calling for effective knowledge transfer from other relevant grids. Specifically, Domain Adaptation (DA) seeks domain-invariant features to boost the model performance in the target domain. Nonetheless, existing DA techniques face significant challenges due to the unique characteristics of physical datasets: (1) complex spatial-temporal correlations, (2) diverse data sources including node/edge measurements and labels, and (3) large-scale data sizes. In this paper, we propose a novel cross-graph DA based on two core designs of graph kernels and graph coarsening. The former design handles spatial-temporal correlations and can incorporate networked measurements and labels conveniently. The spatial structures, temporal trends, measurement similarity, and label information together determine the similarity of two graphs, guiding the DA to find domain-invariant features. Mathematically, we construct a Graph kerNel-based distribution Adaptation (GNA) with a specifically-designed graph kernel. Then, we prove the proposed kernel is positive definite and universal, which strictly guarantees the feasibility of the used DA measure. However, the computation cost of the kernel is prohibitive for large systems. In response, we propose a novel coarsening process to obtain much smaller graphs for GNA. Finally, we report the superiority of GNA in diversified systems, including power systems, mass-damper systems, and human-activity sensing systems. 
    more » « less
  5. This paper studies distributed submodular optimization subject to partition matroid. We work in the value oracle model where the only access of the agents to the utility function is through a black box that returns the utility function value. The agents are communicating over a connected undirected graph and have access only to their own strategy set. As known in the literature, submodular maximization subject to matroid constraints is NP-hard. Hence, our objective is to propose a polynomial-time distributed algorithm to obtain a suboptimal solution with guarantees on the optimality bound. Our proposed algorithm is based on a distributed stochastic gradient ascent scheme built on the multilinear-extension of the submodular set function. We use a maximum consensus protocol to minimize the inconsistency of the shared information over the network caused by delay in the flow of information while solving for the fractional solution of the multilinear extension model. Furthermore, we propose a distributed framework of finding a set solution using the fractional solution. We show that our distributed algorithm results in a strategy set that when the team objective function is evaluated at worst case the objective function value is in 1−1/e−O(1/T) of the optimal solution in the value oracle model where T is the number of communication instances of the agents. An example demonstrates our results. 
    more » « less