skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Domain Adaptation in Physical Systems via Graph Kernel
Physical systems are extending their monitoring capacities to edge areas with low-cost, low-power sensors and advanced data mining and machine learning techniques. However, new systems often have limited data for training the model, calling for effective knowledge transfer from other relevant grids. Specifically, Domain Adaptation (DA) seeks domain-invariant features to boost the model performance in the target domain. Nonetheless, existing DA techniques face significant challenges due to the unique characteristics of physical datasets: (1) complex spatial-temporal correlations, (2) diverse data sources including node/edge measurements and labels, and (3) large-scale data sizes. In this paper, we propose a novel cross-graph DA based on two core designs of graph kernels and graph coarsening. The former design handles spatial-temporal correlations and can incorporate networked measurements and labels conveniently. The spatial structures, temporal trends, measurement similarity, and label information together determine the similarity of two graphs, guiding the DA to find domain-invariant features. Mathematically, we construct a Graph kerNel-based distribution Adaptation (GNA) with a specifically-designed graph kernel. Then, we prove the proposed kernel is positive definite and universal, which strictly guarantees the feasibility of the used DA measure. However, the computation cost of the kernel is prohibitive for large systems. In response, we propose a novel coarsening process to obtain much smaller graphs for GNA. Finally, we report the superiority of GNA in diversified systems, including power systems, mass-damper systems, and human-activity sensing systems.  more » « less
Award ID(s):
2134079 1939725 1947135
PAR ID:
10380837
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
KDD
Page Range / eLocation ID:
868 to 876
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In applying deep learning for malware classifica- tion, it is crucial to account for the prevalence of malware evolution, which can cause trained classifiers to fail on drifted malware. Existing solutions to address concept drift use active learning. They select new samples for analysts to label and then retrain the classifier with the new labels. Our key finding is that the current retraining techniques do not achieve optimal results. These techniques overlook that updating the model with scarce drifted samples requires learning features that remain consistent across pre-drift and post-drift data. The model should thus be able to disregard specific features that, while beneficial for the classification of pre-drift data, are absent in post-drift data, thereby preventing prediction degradation. In this paper, we propose a new technique for detecting and classifying drifted malware that learns drift-invariant features in malware control flow graphs by leveraging graph neural networks with adversarial domain adaptation. We compare it with existing model retraining methods in active learning-based malware detection systems and other domain adaptation techniques from the vision domain. Our approach significantly improves drifted malware detection on publicly available benchmarks and real-world malware databases reported daily by security companies in 2024. We also tested our approach in predicting multiple malware families drifted over time. A thorough evaluation shows that our approach outperforms the state-of-the-art approaches. 
    more » « less
  2. Tremendous recent literature show that associations between different brain regions, i.e., brain connectivity, provide early symptoms of neurological disorders. Despite significant efforts made for graph neural network (GNN) techniques, their focus on graph nodes makes the state-of-the-art GNN methods not suitable for classifying brain connectivity as graphs where the objective is to characterize disease-relevant network dysfunction patterns on graph links. To address this issue, we propose Multi-resolution Edge Network (MENET) to detect disease-specific connectomic benchmarks with high discrimination power across diagnostic categories. The core of MENET is a novel graph edge-wise transform that we propose, which allows us to capture multi-resolution “connectomic” features. Using a rich set of the connectomic features, we devise a graph learning framework to jointly select discriminative edges and assign diagnostic labels for graphs. Experiments on two real datasets show that MENET accurately predicts diagnostic labels and identify brain connectivities highly associated with neurological disorders such as Alzheimer’s Disease and Attention-Deficit/Hyperactivity Disorder. 
    more » « less
  3. Facial micro-expressions (MEs) refer to subtle, transient, and involuntary muscle movements expressing a per-son’s true feelings. This paper presents a novel two-stream relational edge-node graph attention network-based approach to classify MEs in a video by selecting the high-intensity frames and edge-node features that can provide valuable information about the relationship between nodes and structural information in a graph structure. The pa-per examines the impact of different edge-node features and their relationships on the graphs. The first step involves extracting high-intensity-emotion frames from the video using optical flow. Second, node feature embeddings are calculated using the node location coordinate features and the patch size information of the optical flow across each node location. Additionally, we obtain the global and local structural similarity score using the jaccard’s similarity score and radial basis function as the edge features. Third, a self-attention graph pooling layer helps to remove the nodes with lower attention scores based on the top-k selection. As the final step, the network employs a two-stream edge-node graph attention network that focuses on finding correlations among the edge and node features, such as landmark coordinates, optical flow, and global and local edge features. A three-frame graph structure is designed to obtain spatio-temporal information. For 3 and 5 expression classes, the results are compared for SMIC and CASME II databases. 
    more » « less
  4. Domain adaptation has become an attractive learning paradigm, as it can leverage source domains with rich labels to deal with classification tasks in an unlabeled target domain. A few recent studies develop domain adaptation approaches for graph-structured data. In the case of node classification task, current domain adaptation methods only focus on the closed-set setting, where source and target domains share the same label space. A more practical assumption is that the target domain may contain new classes that are not included in the source domain. Therefore, in this paper, we introduce a novel and challenging problem for graphs, i.e., open-set domain adaptive node classification, and propose a new approach to solve it. Specifically, we develop an algorithm for efficient knowledge transfer from a labeled source graph to an unlabeled target graph under a separate domain alignment (SDA) strategy, in order to learn discriminative feature representations for the target graph. Our goal is to not only correctly classify target nodes into the known classes, but also classify unseen types of nodes into an unknown class. Experimental results on real-world datasets show that our method outperforms existing methods on graph domain adaptation. 
    more » « less
  5. null (Ed.)
    Domain adaptation aims to correct the classifiers when faced with distribution shift between source (training) and target (test) domains. State-of-the-art domain adaptation methods make use of deep networks to extract domain-invariant representations. However, existing methods assume that all the instances in the source domain are correctly labeled; while in reality, it is unsurprising that we may obtain a source domain with noisy labels. In this paper, we are the first to comprehensively investigate how label noise could adversely affect existing domain adaptation methods in various scenarios. Further, we theoretically prove that there exists a method that can essentially reduce the side-effect of noisy source labels in domain adaptation. Specifically, focusing on the generalized target shift scenario, where both label distribution 𝑃𝑌 and the class-conditional distribution 𝑃𝑋|𝑌 can change, we discover that the denoising Conditional Invariant Component (DCIC) framework can provably ensures (1) extracting invariant representations given examples with noisy labels in the source domain and unlabeled examples in the target domain and (2) estimating the label distribution in the target domain with no bias. Experimental results on both synthetic and real-world data verify the effectiveness of the proposed method. 
    more » « less