Representing data using time-resolved networks is valuable for analyzing functional data of the human brain. One commonly used method for constructing time-resolved networks from data is sliding window Pearson correlation (SWPC). One major limitation of SWPC is that it applies a high-pass filter to the activity time series. Therefore, if we select a short window (desirable to estimate rapid changes in connectivity), we will remove important low-frequency information. Here, we propose an approach based on single sideband modulation (SSB) in communication theory. This allows us to select shorter windows to capture rapid changes in the time-resolved functional network connectivity (trFNC). We use simulation and real resting-state functional magnetic resonance imaging (fMRI) data to demonstrate the superior performance of SSB+SWPC compared to SWPC. We also compare the recurring trFNC patterns between individuals with the first episode of psychosis (FEP) and typical controls (TC) and show that FEPs stay more in states that show weaker connectivity across the whole brain. A result exclusive to SSB+SWPC is that TCs stay more in a state with negative connectivity between subcortical and cortical regions. Based on all the results, we argue that SSB+SWPC is more sensitive for capturing temporal variation in trFNC.
- Award ID(s):
- 2112455
- PAR ID:
- 10332746
- Date Published:
- Journal Name:
- IEEE International Symposium on Biomedical Imaging (ISBI)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Sliding window correlation (SWC) is utilized in many studies to analyze the temporal characteristics of brain connectivity. However, spurious artifacts have been reported in simulated data using this technique. Several suggestions have been made through the development of the SWC technique. Recently, it has been proposed to utilize a SWC window length of 100 s given that the lowest nominal fMRI frequency is 0.01 Hz. The main pitfall is the loss of temporal resolution due to a large window length. In this work, we propose an average sliding window correlation (ASWC) approach that presents several advantages over the SWC. One advantage is the requirement for a smaller window length. This is important because shorter lengths allow for a more accurate estimation of transient dynamicity of functional connectivity. Another advantage is the behavior of ASWC as a tunable high pass filter. We demonstrate the advantages of ASWC over SWC using simulated signals with configurable functional connectivity dynamics. We present analytical models explaining the behavior of ASWC and SWC for several dynamic connectivity cases. We also include a real data example to demonstrate the application of the new method. In summary, ASWC shows lower artifacts and resolves faster transient connectivity fluctuations, resulting in a lower mean square error than in SWC.
-
Background: Schizophrenia affects around 1% of the global population. Functional connectivity extracted from resting-state functional magnetic resonance imaging (rs-fMRI) has previously been used to study schizophrenia and has great potential to provide novel insights into the disorder. Some studies have shown abnormal functional connectivity in the default mode network (DMN) of individuals with schizophrenia, and more recent studies have shown abnormal dynamic functional connectivity (dFC) in individuals with schizophrenia. However, DMN dFC and the link between abnormal DMN dFC and symptom severity have not been well-characterized. Method: Resting-state fMRI data from subjects with schizophrenia (SZ) and healthy controls (HC) across two datasets were analyzed independently. We captured seven maximally independent subnodes in the DMN by applying group independent component analysis and estimated dFC between subnode time courses using a sliding window approach. A clustering method separated the dFCs into five reoccurring brain states. A feature selection method modeled the difference between SZs and HCs using the state-specific FC features. Finally, we used the transition probability of a hidden Markov model to characterize the link between symptom severity and dFC in SZ subjects. Results: We found decreases in the connectivity of the anterior cingulate cortex (ACC) and increases in the connectivity between the precuneus (PCu) and the posterior cingulate cortex (PCC) (i.e., PCu/PCC) of SZ subjects. In SZ, the transition probability from a state with weaker PCu/PCC and stronger ACC connectivity to a state with stronger PCu/PCC and weaker ACC connectivity increased with symptom severity. Conclusions: To our knowledge, this was the first study to investigate DMN dFC and its link to schizophrenia symptom severity. We identified reproducible neural states in a data-driven manner and demonstrated that the strength of connectivity within those states differed between SZs and HCs. Additionally, we identified a relationship between SZ symptom severity and the dynamics of DMN functional connectivity. We validated our results across two datasets. These results support the potential of dFC for use as a biomarker of schizophrenia and shed new light upon the relationship between schizophrenia and DMN dynamics.more » « less
-
Abstract Quantifying the association between components of multivariate random curves is of general interest and is a ubiquitous and basic problem that can be addressed with functional data analysis. An important application is the problem of assessing functional connectivity based on functional magnetic resonance imaging (fMRI), where one aims to determine the similarity of fMRI time courses that are recorded on anatomically separated brain regions. In the functional brain connectivity literature, the static temporal Pearson correlation has been the prevailing measure for functional connectivity. However, recent research has revealed temporally changing patterns of functional connectivity, leading to the study of dynamic functional connectivity. This motivates new similarity measures for pairs of random curves that reflect the dynamic features of functional similarity. Specifically, we introduce gradient synchronization measures in a general setting. These similarity measures are based on the concordance and discordance of the gradients between paired smooth random functions. Asymptotic normality of the proposed estimates is obtained under regularity conditions. We illustrate the proposed synchronization measures via simulations and an application to resting-state fMRI signals from the Alzheimer’s Disease Neuroimaging Initiative and they are found to improve discrimination between subjects with different disease status.
-
Abstract Dynamic functional network connectivity (dFNC) is an expansion of traditional, static FNC that measures connectivity variation among brain networks throughout scan duration. We used a large resting‐state fMRI (rs‐fMRI) sample from the PREDICT‐HD study (
N = 183 Huntington disease gene mutation carriers [HDgmc] andN = 78 healthy control [HC] participants) to examine whole‐brain dFNC and its associations with CAG repeat length as well as the product of scaled CAG length and age, a variable representing disease burden. We also tested for relationships between functional connectivity and motor and cognitive measurements. Group independent component analysis was applied to rs‐fMRI data to obtain whole‐brain resting state networks. FNC was defined as the correlation between RSN time‐courses. Dynamic FNC behavior was captured using a sliding time window approach, and FNC results from each window were assigned to four clusters representing FNC states, using a k‐means clustering algorithm. HDgmc individuals spent significantly more time in State‐1 (the state with the weakest FNC pattern) compared to HC. However, overall HC individuals showed more FNC dynamism than HDgmc. Significant associations between FNC states and genetic and clinical variables were also identified. In FNC State‐4 (the one that most resembled static FNC), HDgmc exhibited significantly decreased connectivity between the putamen and medial prefrontal cortex compared to HC, and this was significantly associated with cognitive performance. In FNC State‐1, disease burden in HDgmc participants was significantly associated with connectivity between the postcentral gyrus and posterior cingulate cortex, as well as between the inferior occipital gyrus and posterior parietal cortex.