skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian Persuasion in Sequential Trials
We consider a Bayesian persuasion problem where the sender tries to persuade the receiver to take a particular action via a sequence of signals. This we model by considering multi-phase trials with different experiments conducted based on the outcomes of prior experiments. In contrast to most of the literature, we consider the problem with constraints on signals imposed on the sender. This we achieve by fixing some of the experiments in an exogenous manner; these are called determined experiments. This modeling helps us understand real-world situations where this occurs: e.g., multi-phase drug trials where the FDA determines some of the experiments, start-up acquisition by big firms where late-stage assessments are determined by the potential acquirer, multi-round job interviews where the candidates signal initially by presenting their qualifications but the rest of the screening procedures are determined by the interviewer. The non-determined experiments (signals) in the multi-phase trial are to be chosen by the sender in order to persuade the receiver best. With a binary state of the world, we start by deriving the optimal signaling policy in the only non-trivial configuration of a two-phase trial with binary-outcome experiments. We then generalize to multi-phase trials with binary-outcome experiments where the determined experiments can be placed at arbitrary nodes in the trial tree. Here we present a dynamic programming algorithm to derive the optimal signaling policy that uses the two-phase trial solution’s structural insights. We also contrast the optimal signaling policy structure with classical Bayesian persuasion strategies to highlight the impact of the signaling constraints on the sender.  more » « less
Award ID(s):
2008130 1955777 2038416 2007256
PAR ID:
10332940
Author(s) / Creator(s):
; ;
Editor(s):
Feldman, M.
Date Published:
Journal Name:
Web and Internet Economics. WINE 2021. Lecture Notes in Computer Science()
Volume:
13112
Page Range / eLocation ID:
22-40
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper introduces the concept of leakage-robust Bayesian persuasion. Situated between public Bayesian persuasion and private Bayesian persuasion, leakage-robust persuasion considers a setting where one or more signals privately communicated by a sender to the receivers may be leaked. We study the design of leakage-robust Bayesian persuasion schemes and quantify the price of robustness using two formalisms: - The first notion, k-worst-case persuasiveness, requires a signaling scheme to remain persuasive as long as each receiver observes no more than k leaked signals from other receivers. We quantify the Price of Robust Persuasiveness (PoRPk)— i.e., the gap in sender's utility as compared to the optimal private persuasion scheme—as Θ(min{2k,n}) for supermodular sender utilities and Θ(k) for submodular or XOS sender utilities, where n is the number of receivers. This result also establishes that in some instances, Θ(log k) leakages are sufficient for the utility of the optimal leakage-robust persuasion to degenerate to that of public persuasion. - The second notion, expected downstream utility robustness, relaxes the persuasiveness requirement and instead considers the impact on sender's utility resulting from receivers best responding to their observations. By quantifying the Price of Robust Downstream Utility (PoRU) as the gap between the sender's expected utility over the randomness in the leakage pattern as compared to private persuasion, our results show that, over several natural and structured distributions of leakage patterns, PoRU improves PoRP to Θ(k) or even Θ(1), where k is the maximum number of leaked signals observable to each receiver across leakage patterns in the distribution. En route to these results, we show that subsampling and masking serve as general-purpose algorithmic paradigms for transforming any private persuasion signaling scheme to one that is leakage-robust, with minmax optimal loss in sender's utility. A full version of this paper can be found at https://arxiv.org/abs/2411.16624. 
    more » « less
  2. In a game of persuasion with evidence, a sender has private information. By presenting evidence on the information, the sender wishes to persuade a receiver to take a single action (e.g., hire a job candidate, or convict a defendant). The sender’s utility depends solely on whether the receiver takes the action. The receiver’s utility depends on both the action and the sender’s private information. We study three natural variations. First, we consider the problem of computing an equilibrium of the game without commitment power. Second, we consider a persuasion variant, where the sender commits to a signaling scheme and the receiver, after seeing the evidence, takes the action or not. Third, we study a delegation variant, where the receiver first commits to taking the action if being presented certain evidence, and the sender presents evidence to maximize the probability the action is taken. We study these variants through the computational lens, and give hardness results, optimal approximation algorithms, and polynomial-time algorithms for special cases. Among our results is an approximation algorithm that rounds a semidefinite program that might be of independent interest, since, to the best of our knowledge, it is the first such approximation algorithm in algorithmic economics. 
    more » « less
  3. Motivated by practical concerns in applying information design to markets and service systems, we consider a persuasion problem between a sender and a receiver where the receiver may not be an expected utility maximizer. In particular, the receiver’s utility may be non-linear in her belief; we deem such receivers as risk-conscious. Such utility models arise, for example, when the receiver exhibits sensitivity to the variability and the risk in the payoff on choosing an action (e.g., waiting time for a service). In the presence of such non-linearity, the standard approach of using revelation-principle style arguments fails to characterize the set of signals needed in the optimal signaling scheme. Our main contribution is to provide a theoretical framework, using results from convex analysis, to overcome this technical challenge. In particular, in general persuasion settings with risk-conscious agents, we prove that the sender’s problem can be reduced to a convex optimization program. Furthermore, using this characterization, we obtain a bound on the number of signals needed in the optimal signaling scheme. We apply our methods to study a specific setting, namely binary per-suasion, where the receiver has two possible actions (0 and 1), and the sender always prefers the receiver taking action 1. Under a mild convexity assumption on the receiver’s utility and using a geometric approach,we show that the convex program can be further reduced to a linear program. Furthermore, this linear program yields a canonical construction of the set of signals needed in an optimal signaling mechanism. In particular, this canonical set of signals only involves signals that fully reveal the state and signals that induce uncertainty between two states.We illustrate our results in the setting of signaling wait time information in an unobservable queue with customers whose utilities depend on the variance of their waiting times. 
    more » « less
  4. We consider a dynamic Bayesian persuasion setting where a single long-lived sender persuades a stream of ``short-lived'' agents (receivers) by sharing information about a payoff-relevant state. The state transitions are Markovian and the sender seeks to maximize the long-run average reward by committing to a (possibly history-dependent) signaling mechanism. While most previous studies of Markov persuasion consider exogenous agent beliefs that are independent of the chain, we study a more natural variant with endogenous agent beliefs that depend on the chain's realized history. A key challenge to analyze such settings is to model the agents' partial knowledge about the history information. We analyze a Markov persuasion process (MPP) under various information models that differ in the amount of information the receivers have about the history of the process. Specifically, we formulate a general partial-information model where each receiver observes the history with an l period lag. Our technical contribution start with analyzing two benchmark models, i.e., the full-history information model and the no-history information model. We establish an ordering of the sender's payoff as a function of the informativeness of agent's information model (with no-history as the least informative), and develop efficient algorithms to compute optimal solutions for these two benchmarks. For general l, we present the technical challenges in finding an optimal signaling mechanism, where even determining the right dependency on the history becomes difficult. To bypass the difficulties, we use a robustness framework to design a "simple" \emph{history-independent} signaling mechanism that approximately achieves optimal payoff when l is reasonably large. 
    more » « less
  5. Guruswami, Venkatesan (Ed.)
    We study a communication game between a sender and receiver. The sender chooses one of her signals about the state of the world (i.e., an anecdote) and communicates it to the receiver who takes an action affecting both players. The sender and receiver both care about the state of the world but are also influenced by personal preferences, so their ideal actions can differ. We characterize perfect Bayesian equilibria. The sender faces a temptation to persuade: she wants to select a biased anecdote to influence the receiver’s action. Anecdotes are still informative to the receiver (who will debias at equilibrium) but the attempt to persuade comes at the cost of precision. This gives rise to informational homophily where the receiver prefers to listen to like-minded senders because they provide higher-precision signals. Communication becomes polarized when the sender is an expert with access to many signals, with the sender choosing extreme outlier anecdotes at equilibrium (unless preferences are perfectly aligned). This polarization dissipates all the gains from communication with an increasingly well-informed sender when the anecdote distribution is heavy-tailed. Experts therefore face a curse of informedness: receivers will prefer to listen to less-informed senders who cannot pick biased signals as easily. 
    more » « less