We extend Kreps and Wilson's concept of sequential equilibrium to games with infinite sets of signals and actions. A strategy profile is a conditional ε ‐equilibrium if, for any of a player's positive probability signal events, his conditional expected utility is within ε of the best that he can achieve by deviating. With topologies on action sets, a conditional ε ‐equilibrium is full if strategies give every open set of actions positive probability. Such full conditional ε ‐equilibria need not be subgame perfect, so we consider a non‐topological approach. Perfect conditional ε ‐equilibria are defined by testing conditional ε ‐rationality along nets of small perturbations of the players' strategies and of nature's probability function that, for any action and for almost any state, make this action and state eventually (in the net) always have positive probability. Every perfect conditional ε ‐equilibrium is a subgame perfect ε ‐equilibrium, and, in finite games, limits of perfect conditional ε ‐equilibria as ε → 0 are sequential equilibrium strategy profiles. But limit strategies need not exist in infinite games so we consider instead the limit distributions over outcomes. We call such outcome distributions perfect conditional equilibrium distributions and establish their existence for a large class of regular projective games. Nature's perturbations can produce equilibria that seem unintuitive and so we augment the game with a net of permissible perturbations.
more »
« less
Dynamic Games Among Teams with Delayed Intra-Team Information Sharing
We analyze a class of stochastic dynamic games among teams with asymmetric information, where members of a team share their observations internally with a delay of d. Each team is associated with a controlled Markov Chain, whose dynamics are coupled through the players’ actions. These games exhibit challenges in both theory and practice due to the presence of signaling and the increasing domain of information over time. We develop a general approach to characterize a subset of Nash equilibria where the agents can use a compressed version of their information, instead of the full information, to choose their actions. We identify two subclasses of strategies: sufficient private information-Based (SPIB) strategies, which only compress private information, and compressed information-based (CIB) strategies, which compress both common and private information. We show that SPIB-strategy-based equilibria exist and the set of payoff profiles of such equilibria is the same as that of all Nash equilibria. On the other hand, we show that CIB-strategy-based equilibria may not exist. We develop a backward inductive sequential procedure, whose solution (if it exists) provides a CIB strategy-based equilibrium. We identify some instances where we can guarantee the existence of a solution to the above procedure. Our results highlight the tension among compression of information, ability of compression-based strategies to sustain all or some of the equilibrium payoff profiles, and backward inductive sequential computation of equilibria in stochastic dynamic games with asymmetric information.
more »
« less
- PAR ID:
- 10332969
- Date Published:
- Journal Name:
- Dynamic Games and Applications
- ISSN:
- 2153-0785
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Jin, Shi (Ed.)In this paper, we apply the idea of fictitious play to design deep neural networks (DNNs), and develop deep learning theory and algorithms for computing the Nash equilibrium of asymmetric N-player non-zero-sum stochastic differential games, for which we refer as deep fictitious play, a multi-stage learning process. Specifically at each stage, we propose the strategy of letting individual player optimize her own payoff subject to the other players’ previous actions, equivalent to solving N decoupled stochastic control optimization problems, which are approximated by DNNs. Therefore, the fictitious play strategy leads to a structure consisting of N DNNs, which only communicate at the end of each stage. The resulting deep learning algorithm based on fictitious play is scalable, parallel and model-free, i.e., using GPU parallelization, it can be applied to any N-player stochastic differential game with different symmetries and heterogeneities (e.g., existence of major players). We illustrate the performance of the deep learning algorithm by comparing to the closed-form solution of the linear quadratic game. Moreover, we prove the convergence of fictitious play under appropriate assumptions, and verify that the convergent limit forms an open-loop Nash equilibrium. We also discuss the extensions to other strategies designed upon fictitious play and closed-loop Nash equilibrium in the end.more » « less
-
Public goods games study the incentives of individuals to contribute to a public good and their behaviors in equilibria. In this paper, we examine a specific type of public goods game where players are networked and each has binary actions, and focus on the algorithmic aspects of such games. First, we show that checking the existence of a pure-strategy Nash equilibrium is NP-Complete. We then identify tractable instances based on restrictions of either utility functions or of the underlying graphical structure. In certain cases, we also show that we can efficiently compute a socially optimal Nash equilibrium. Finally, we propose a heuristic approach for computing approximate equilibria in general binary networked public goods games, and experimentally demonstrate its effectiveness.more » « less
-
Policy Space Response Oracles (PSRO) interleaves empirical game-theoretic analysis with deep reinforcement learning (DRL) to solve games too complex for traditional analytic methods. Tree-exploiting PSRO (TE-PSRO) is a variant of this approach that iteratively builds a coarsened empirical game model in extensive form using data obtained from querying a simulator that represents a detailed description of the game.We make two main methodological advances to TE-PSRO that enhance its applicability to complex games of imperfect information. First, we introduce a scalable representation for the empirical game tree where edges correspond to implicit policies learned through DRL. These policies cover conditions in the underlying game abstracted in the game model, supporting sustainable growth of the tree over epochs. Second, we leverage extensive form in the empirical model by employing refined Nash equilibria to direct strategy exploration. To enable this, we give a modular and scalable algorithm based on generalized backward induction for computing a subgame perfect equilibrium (SPE) in an imperfect-information game. We experimentally evaluate our approach on a suite of games including an alternating-offer bargaining game with outside offers; our results demonstrate that TE-PSRO converges toward equilibrium faster when new strategies are generated based on SPE rather than Nash equilibrium, and with reasonable time/memory requirements for the growing empirical model.more » « less
An official website of the United States government

