skip to main content

This content will become publicly available on May 1, 2023

Title: A Case Study on Stochastic Games on Large Graphs in Mean Field and Sparse Regimes
We study a class of linear-quadratic stochastic differential games in which each player interacts directly only with its nearest neighbors in a given graph. We find a semiexplicit Markovian equilibrium for any transitive graph, in terms of the empirical eigenvalue distribution of the graph’s normalized Laplacian matrix. This facilitates large-population asymptotics for various graph sequences, with several sparse and dense examples discussed in detail. In particular, the mean field game is the correct limit only in the dense graph case, that is, when the degrees diverge in a suitable sense. Although equilibrium strategies are nonlocal, depending on the behavior of all players, we use a correlation decay estimate to prove a propagation of chaos result in both the dense and sparse regimes, with the sparse case owing to the large distances between typical vertices. Without assuming the graphs are transitive, we show also that the mean field game solution can be used to construct decentralized approximate equilibria on any sufficiently dense graph sequence.
Authors:
;
Award ID(s):
2045328
Publication Date:
NSF-PAR ID:
10333518
Journal Name:
Mathematics of Operations Research
Volume:
47
Issue:
2
Page Range or eLocation-ID:
1530 to 1565
ISSN:
0364-765X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider an ultra-dense wireless network with N channels and M = N devices. Messages with fresh information are generated at each device according to a random process and need to be transmitted to an access point. The value of a message decreases as it ages, so each device searches for an idle channel to transmit the message as soon as it can. However, each channel probing is associated with a fixed cost (energy), so a device needs to adapt its probing rate based on the "age" of the message. At each device, the design of the optimal probing strategy can be formulated as an infinite horizon Markov Decision Process (MDP) where the devices compete with each other to find idle channels. While it is natural to view the system as a Bayesian game, it is often intractable to analyze such a system. Thus, we use the Mean Field Game (MFG) approach to analyze the system in a large-system regime, where the number of devices is very large, to understand the structure of the problem and to find efficient probing strategies. We present an analysis based on the MFG perspective. We begin by characterizing the space of valid policies andmore »use this to show the existence of a Mean Field Nash Equilibrium (MFNE) in a constrained set for any general increasing cost functions with diminishing rewards. Further we provide an algorithm for computing the equilibrium for any given device, and the corresponding age-dependent channel probing policy.« less
  2. The transitive closure of a graph is a new graph where every vertex is directly connected to all vertices to which it had a path in the original graph. Transitive closures are useful for reachability and relationship querying. Finding the transitive closure can be computationally expensive and requires a large memory footprint as the output is typically larger than the input. Some of the original research on transitive closures assumed that graphs were dense and used dense adjacency matrices. We have since learned that many real-world networks are extremely sparse, and the existing methods do not scale. In this work, we introduce a new algorithm called Anti-section Transitive Closure (ATC) for finding the transitive closure of a graph. We present a new parallel edges operation – anti-sections – for finding new edges to reachable vertices. ATC scales to massively multithreaded systems such as NVIDIA’s GPU with tens of thousands of threads. We show that the anti-section operation shares some traits with the triangle counting intersection operation in graph analysis. Lastly, we view the transitive closure problem as a dynamic graph problem requiring edge insertions. By doing this, our memory footprint is smaller. We also show a method for creating themore »batches in parallel using two different techniques: dual-round and hash. Using these techniques and the Hornet dynamic graph data structure, we show our new algorithm on an NVIDIA Titan V GPU. We compare with other packages such as NetworkX, SEI-GBTL, SuiteSparse, and cuSparse.« less
  3. Consider a system with N identical single-server queues and a number of task types, where each server is able to process only a small subset of possible task types. Arriving tasks select [Formula: see text] random compatible servers and join the shortest queue among them. The compatibility constraints are captured by a fixed bipartite graph between the servers and the task types. When the graph is complete bipartite, the mean-field approximation is accurate. However, such dense compatibility graphs are infeasible for large-scale implementation. We characterize a class of sparse compatibility graphs for which the mean-field approximation remains valid. For this, we introduce a novel notion, called proportional sparsity, and establish that systems with proportionally sparse compatibility graphs asymptotically match the performance of a fully flexible system. Furthermore, we show that proportionally sparse random compatibility graphs can be constructed, which reduce the server degree almost by a factor [Formula: see text] compared with the complete bipartite compatibility graph.
  4. Dyck-reachability is a fundamental formulation for program analysis, which has been widely used to capture properly-matched-parenthesis program properties such as function calls/returns and field writes/reads. Bidirected Dyck-reachability is a relaxation of Dyck-reachability on bidirected graphs where each edge u → ( i v labeled by an open parenthesis “( i ” is accompanied with an inverse edge v → ) i u labeled by the corresponding close parenthesis “) i ”, and vice versa. In practice, many client analyses such as alias analysis adopt the bidirected Dyck-reachability formulation. Bidirected Dyck-reachability admits an optimal reachability algorithm. Specifically, given a graph with n nodes and m edges, the optimal bidirected Dyck-reachability algorithm computes all-pairs reachability information in O ( m ) time. This paper focuses on the dynamic version of bidirected Dyck-reachability. In particular, we consider the problem of maintaining all-pairs Dyck-reachability information in bidirected graphs under a sequence of edge insertions and deletions. Dynamic bidirected Dyck-reachability can formulate many program analysis problems in the presence of code changes. Unfortunately, solving dynamic graph reachability problems is challenging. For example, even for maintaining transitive closure, the fastest deterministic dynamic algorithm requires O ( n 2 ) update time to achieve O (1) querymore »time. All-pairs Dyck-reachability is a generalization of transitive closure. Despite extensive research on incremental computation, there is no algorithmic development on dynamic graph algorithms for program analysis with worst-case guarantees. Our work fills the gap and proposes the first dynamic algorithm for Dyck reachability on bidirected graphs. Our dynamic algorithms can handle each graph update ( i.e. , edge insertion and deletion) in O ( n ·α( n )) time and support any all-pairs reachability query in O (1) time, where α( n ) is the inverse Ackermann function. We have implemented and evaluated our dynamic algorithm on an alias analysis and a context-sensitive data-dependence analysis for Java. We compare our dynamic algorithms against a straightforward approach based on the O ( m )-time optimal bidirected Dyck-reachability algorithm and a recent incremental Datalog solver. Experimental results show that our algorithm achieves orders of magnitude speedup over both approaches.« less
  5. We develop a probabilistic approach to continuous-time finite state mean field games. Based on an alternative description of continuous-time Markov chains by means of semimartingales and the weak formulation of stochastic optimal control, our approach not only allows us to tackle the mean field of states and the mean field of control at the same time, but also extends the strategy set of players from Markov strategies to closed-loop strategies. We show the existence and uniqueness of Nash equilibrium for the mean field game as well as how the equilibrium of a mean field game consists of an approximative Nash equilibrium for the game with a finite number of players under different assumptions of structure and regularity on the cost functions and transition rate between states.