skip to main content


Title: Interfacial processes in electrochemical energy systems
Electrochemical energy systems such as batteries, water electrolyzers, and fuel cells are considered as promising and sustainable energy storage and conversion devices due to their high energy densities and zero or negative carbon dioxide emission. However, their widespread applications are hindered by many technical challenges, such as the low efficiency and poor long-term cyclability, which are mostly affected by the changes at the reactant/electrode/electrolyte interfaces. These interfacial processes involve ion/electron transfer, molecular/ion adsorption/desorption, and complex interface restructuring, which lead to irreversible modifications to the electrodes and the electrolyte. The understanding of these interfacial processes is thus crucial to provide strategies for solving those problems. In this review, we will discuss different interfacial processes at three representative interfaces, namely, solid–gas, solid–liquid, and solid–solid, in various electrochemical energy systems, and how they could influence the performance of electrochemical systems.  more » « less
Award ID(s):
1949870 2016192 1832803
NSF-PAR ID:
10333552
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Chemical Communications
Volume:
57
Issue:
81
ISSN:
1359-7345
Page Range / eLocation ID:
10453 to 10468
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The growing demands for high-energy density electrical energy storage devices stimulate the coupling of conversion-type cathodes and lithium (Li) metal anodes. While promising, the use of these “Li-free” cathodes brings new challenges to the Li anode interface, as Li needs to be dissolved first during cell operation. In this study, we have achieved a direct visualization and comprehensive analysis of the dynamic evolution of the Li interface. The critical metrics of the interfacial resistance, Li growth, and solid electrolyte interface (SEI) distribution during the initial dissolution/deposition processes were systematically investigated by employing multidimensional analysis methods. They include three-electrode impedance tests, in situ atomic force microscopy, scanning electrochemical microscopy, and cryogenic scanning transmission electron microscopy. The high-resolution imaging and real-time observations show that a loose, diffuse, and unevenly distributed SEI is formed during the initial dissolution process. This leads to the dramatically fast growth of Li during the subsequent deposition, deviating from Fick’s law, which exacerbates the interfacial impedance. The compactness of the interfacial structure and enrichment of electrolyte species at the surface during the initial deposition play critical roles in the long-term stability of Li anodes, as revealed by operando confocal Raman spectroscopic mapping. Our observations relate to ion transfer, morphological and structural evolution, and Li (de)solvation at Li interfaces, revealing the underlying pathways influenced by the initial dissolution process, which promotes a reconsideration of anode investigations and effective protection strategies. 
    more » « less
  2. Ions at battery interfaces participate in both the solid-electrolyte interphase (SEI) formation and the subsequent energy storage mechanism. However, few in situ methods can directly track interfacial Li + dynamics. Herein, we report on scanning electrochemical microscopy with Li + sensitive probes for its in situ , localized tracking during SEI formation and intercalation. We followed the potential-dependent reactivity of edge plane graphite influenced by the interfacial consumption of Li + by competing processes. Cycling in the SEI formation region revealed reversible ionic processes ascribed to surface redox, as well as irreversible SEI formation. Cycling at more negative potentials activated reversible (de)intercalation. Modeling the ion-sensitive probe response yielded Li + intercalation rate constants between 10 −4 to 10 −5 cm s −1 . Our studies allow decoupling of charge-transfer steps at complex battery interfaces and create opportunities for interrogating reactivity at individual sites. 
    more » « less
  3. Electrochemical energy storage is a cost-effective, sustainable method for storing and delivering energy gener- ated from renewable resources. Among electrochemical energy storage devices, the lithium-ion battery (LIB) has dominated due to its high energy and power density. The success of LIBs has generated increased interest in sodium-ion battery (NaB) technology amid concerns of the sustainability and cost of lithium resources. In recent years, numerous studies have shown that sodium-ion solid-state electrolytes (NaSEs) have considerable potential to enable new cell chemistries that can deliver superior electrochemical performance to liquid-electrolyte-based NaBs. However, their commercial implementation is hindered by slow ionic transport at ambient and chemical/ mechanical incompatibility at interfaces. In this review, various NaSEs are first characterized based on individual crystal structures and ionic conduction mechanisms. Subsequently, selected methods of modifying interfaces in sodium solid-state batteries (NaSSBs) are covered, including anode wetting, ionic liquid (IL) addition, and composite polymer electrolytes (CPEs). Finally, examples are provided of how these techniques improve cycle life and rate performance of different cathode materials including sulfur, oxide, hexacyanoferrate, and phosphate-type. A focus on interfacial modification and optimization is crucial for realizing next-generation batteries. Thus, the novel methods reviewed here could pave the way toward a NaSSB capable of with- standing the high current and cycle life demands of future applications. 
    more » « less
  4. Abstract

    The atomic‐scale structure of the interface between a transition metal oxide and aqueous electrolyte regulates the interfacial chemical reactions fundamental to (photo)electrochemical energy conversion and electrode degradation. Measurements that probe oxide–electrolyte interfaces in situ provide important details of ion and solvent arrangements, but atomically precise structural models do not exist for common oxide–electrolyte interfaces far from equilibrium. Using a novel cell, the structure of the hematite (α‐Fe2O3) ()–electrolyte interface is measured under controlled electrochemical bias using synchrotron crystal truncation rod X‐ray scattering. At increasingly cathodic potentials, charge‐compensating protonation of surface oxygen groups increases the coverage of specifically bound water while adjacent water layers displace outwardly and became disordered. Returning to open circuit potential leaves the surface in a persistent metastable state. Therefore, the flux of current and ions across the interface is regulated by multiple electrolyte layers whose specific structure and polarization change in response to the applied potential. The study reveals the complex environment underlying the simplified electrical double layer models used to interpret electrochemical measurements and emphasizes the importance of condition‐specific structural characterization for properly understanding catalytic processes at functional transition metal oxide–electrolyte interfaces.

     
    more » « less
  5.  
    more » « less