skip to main content


Title: Transition paths of North Atlantic Deep Water
Abstract Recently introduced in oceanography to interpret the near surface circulation, Transition Path Theory ( TPT ) is a methodology that rigorously characterizes ensembles of trajectory pieces flowing out from a source last and into a target next, i.e., those that most productively contribute to transport. Here we use TPT to frame, in a statistically more robust fashion than earlier analysis, equatorward routes of North Atlantic Deep Water (NADW) in the subpolar North Atlantic. TPT is applied on all available RAFOS and Argo floats in the area by means of a discretization of the Lagrangian dynamics described by their trajectories. By considering floats at different depths, we investigate transition paths of NADW in its upper (UNADW) and lower (LNADW) layers. We find that the majority of UNADW transition paths sourced in the Labrador and southwestern Irminger Seas reach the western side of a target arranged zonally along the southern edge of the subpolar North Atlantic domain visited by the floats. This is accomplished in the form of a well-organized deep boundary current (DBC). LNADW transition paths sourced west of the Reykjanes Ridge reveal a similar pattern, while those sourced east of the ridge are found to hit the western side of the target via a DBC and also several other places along it in a less organized fashion, indicating southward flow along the eastern and western flanks of the Mid-Atlantic Ridge. Naked-eye inspection of trajectories suggest generally much more diffusive equatorward NADW routes. A source-independent dynamical decomposition of the flow domain into analogous backward-time basins of attraction, beyond the reach of direct inspection of trajectories, reveals a much wider influence of the western side of the target for UNADW than for LNADW. For UNADW, the average expected duration of the pathways from the Labrador and Irminger Seas was found to be of 2 to 3 years. For LNADW, the duration was found to be influenced by the Reykjanes Ridge, being as long as 8 years from the western side of the ridge and of about 3 years on average from its eastern side.  more » « less
Award ID(s):
1851097
NSF-PAR ID:
10333633
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Atmospheric and Oceanic Technology
ISSN:
0739-0572
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this note, we apply transition path theory (TPT) from Markov chains to shed light on the problem of Iceland–Scotland Overflow Water (ISOW) equatorward export. A recent analysis of observed trajectories of submerged floats demanded revision of the traditional abyssal circulation theory, which postulates that ISOW should steadily flow along a deep boundary current (DBC) around the subpolar North Atlantic prior to exiting it. The TPT analyses carried out here allow attention to be focused on the portions of flow from the origin of ISOW to the region where ISOW exits the subpolar North Atlantic and suggest that insufficient sampling may be biasing the aforementioned demand. The analyses, appropriately adapted to represent a continuous input of ISOW, are carried out on three time-homogeneous Markov chains modeling the ISOW flow. One is constructed using a high number of simulated trajectories homogeneously covering the flow domain. The other two use much fewer trajectories which heterogeneously cover the domain. The trajectories in the latter two chains are observed trajectories or simulated trajectories subsampled at the observed frequency. While the densely sampled chain supports a well-defined DBC, whether this is a peculiarity of the simulation considered or not, the more heterogeneously sampled chains do not, irrespective of the nature of the trajectories used, i.e., observed or simulated. Studying the sampling sensitivity of the Markov chains, we can give recommendations for enlarging the existing float dataset to improve the significance of conclusions about long-time-asymptotic aspects of the ISOW circulation. 
    more » « less
  2. Abstract

    The connections between the overturning of the subpolar North Atlantic and regional density changes are assessed on interannual and decadal timescales using historical, data‐based reconstructions of the overturning over the last 60 years and forward model integrations with buoyancy and wind forcing. The data‐based reconstructions reveal a dominant eastern basin contribution to the subpolar overturning in density space and changes in the overturning reaching ±2.5 Sv, which are both in accord with the Overturning in the Subpolar North Atlantic Program (OSNAP). The zonally integrated geostrophic velocity across the basin is connected to boundary contrasts in Montgomery potential in density space. The overturning for the eastern side of the basin is strongly correlated with density changes in the Irminger and Labrador Seas, while the overturning for the western side is correlated with boundary density changes in the Labrador Sea. These boundary density signals are a consequence of local atmospheric forcing and transport of upstream density changes. In forward model experiments, a localized density increase over the Irminger Sea increases the overturning over both sides of the basin due to dense waters spreading to the Labrador Sea. Conversely, a localized density increase over the Labrador Sea only increases the overturning for the western basin and instead eventually decreases the overturning for the eastern basin. Labrador Sea density provides a useful overturning metric by its direct control of the overturning over the western side and lower latitudes of the subpolar basin.

     
    more » « less
  3. Abstract. The overturning streamfunction as measured at the OSNAP (Overturning in the Subpolar North Atlantic Program) mooring array represents the transformation of warm, salty Atlantic Water into cold, fresh North Atlantic Deep Water (NADW). The magnitude of the overturning at the OSNAP array can therefore be linked to the transformation by air–sea buoyancy fluxes and mixing in the region north of the OSNAP array. Here, we estimate these water mass transformations using observational-based, reanalysis-based and model-based datasets. Our results highlight that air–sea fluxes alone cannot account for the time-mean magnitude of the overturning at OSNAP, and therefore a residual mixing-driven transformation is required to explain the difference. A cooling by air–sea heat fluxes and a mixing-driven freshening in the Nordic Seas, Iceland Basin and Irminger Sea precondition the warm, salty Atlantic Water, forming subpolar mode water classes in the subpolar North Atlantic. Mixing in the interior of the Nordic Seas, over the Greenland–Scotland Ridge and along the boundaries of the Irminger Sea and Iceland Basin drive a water mass transformation that leads to the convergence of volume in the water mass classes associated with NADW. Air–sea buoyancy fluxes and mixing therefore play key and complementary roles in setting the magnitude of the overturning within the subpolar North Atlantic and Nordic Seas. This study highlights that, for ocean and climate models to realistically simulate the overturning circulation in the North Atlantic, the small-scale processes that lead to the mixing-driven formation of NADW must be adequately represented within the model's parameterisation scheme. 
    more » « less
  4. Abstract

    This study of the first continuous multiyear observations of the East Reykjanes Ridge Current (ERRC) reveals a highly variable, mostly barotropic southwestward flow with a mean transport of 10–13 Sv. The ERRC effectively acts as a western boundary current in the Iceland Basin on the eastern flank of the Reykjanes Ridge. As part of the Overturning in the Subpolar North Atlantic Program (OSNAP), continuous measurements of the ERRC have been maintained for the first time using acoustic Doppler current profilers, current meters, and dynamic height moorings at six mooring sites near 58°N since 2014. Together with satellite altimetry and Argo profile and drift data, the mean transport, synoptic variability, water mass properties, and upstream and downstream pathways of the ERRC are examined. Results show that the ERRC forms in the northeastern Iceland Basin at the convergence of surface waters from the North Atlantic Current and deeper Icelandic Slope Water formed along the Iceland‐Faroe Ridge. The ERRC becomes denser as it cools and freshens along the northern and western topography of the Basin before retroflecting over the Reykjanes Ridge near 59°N into the Irminger Current. Analysis of the flow‐weighted density changes along the ERRC's path reveals that it is responsible for about one third of the net potential density change of waters circulating around the rim of the subpolar gyre.

     
    more » « less
  5. Abstract

    The Subpolar North Atlantic is prone to recurrent extreme freshening events called Great Salinity Anomalies (GSAs). Here, we combine hydrographic ocean analyses and moored observations to document the arrival, spreading, and impacts of the most recent GSA in the Irminger Sea. This GSA is associated with a rapid freshening of the upper Irminger Sea between 2015 and 2020, culminating in annually averaged salinities as low as the freshest years of the 1990s and possibly since 1960. Upon the GSA propagation into the Irminger Sea over the Reykjanes Ridge, the boundary currents rapidly advected its signal around the basin within months while fresher waters slowly spread and accumulated into the interior. The anomalies in the interior freshened waters produced by deep convection during the 2017–2018 winter and actively contributed to the suppression of deep convection in the following two winters.

     
    more » « less