skip to main content

Title: Farming decisions in a complex and uncertain world: Nitrogen management in Midwestern corn agriculture
Excess agricultural nitrogen (N) in the environment is a persistent problem in the United States and other regions of the world, contributing to water and air pollution, as well as to climate change. Efforts to reduce N from agricultural sources largely rely on voluntary efforts by farmers to reduce inputs and improve uptake by crops. However, research has failed to comprehensively depict farmers' N decision-making processes, particularly when engaging with uncertainty. Through analysis of in-depth interviews with US corn (Zea mays L.) growers, this study reveals how farmers experience and process numerous uncertainties associated with N management, such as weather variability, crop and input price volatility, lack of knowledge about biophysical systems, and the possibility of underapplying or overapplying. Farmers used one of two general decision-making management strategies to address these uncertainties: heuristic-based or data-intensive decision-making. Heuristic-based decision-making involves minimizing sources of uncertainty and reliance on heuristics and personal previous experiences, while data-intensive decision-making is the increased use of field- and farm-scale data collection and management, as well as increased management effort within a given growing season.
Authors:
; ;
Award ID(s):
1832042
Publication Date:
NSF-PAR ID:
10170319
Journal Name:
Journal of Soil and Water Conservation
Page Range or eLocation-ID:
jswc.2020.00070
ISSN:
0022-4561
Sponsoring Org:
National Science Foundation
More Like this
  1. The Colorado River Basin (CRB) supports the water supply for seven states and forty million people in the Western United States (US) and has been suffering an extensive drought for more than two decades. As climate change continues to reshape water resources distribution in the CRB, its impact can differ in intensity and location, resulting in variations in human adaptation behaviors. The feedback from human systems in response to the environmental changes and the associated uncertainty is critical to water resources management, especially for water-stressed basins. This paper investigates how human adaptation affects water scarcity uncertainty in the CRB and highlights the uncertainties in human behavior modeling. Our focus is on agricultural water consumption, as approximately 80% of the water consumption in the CRB is used in agriculture. We adopted a coupled agent-based and water resources modeling approach for exploring human-water system dynamics, in which an agent is a human behavior model that simulates a farmer’s water consumption decisions. We examined uncertainties at the system, agent, and parameter levels through uncertainty, clustering, and sensitivity analyses. The uncertainty analysis results suggest that the CRB water system may experience 13 to 30 years of water shortage during the 2019–2060 simulation period, dependingmore »on the paths of farmers’ adaptation. The clustering analysis identified three decision-making classes: bold, prudent, and forward-looking, and quantified the probabilities of an agent belonging to each class. The sensitivity analysis results indicated agents whose decision making models require further investigation and the parameters with the higher uncertainty reduction potentials. By conducting numerical experiments with the coupled model, this paper presents quantitative and qualitative information about farmers’ adaptation, water scarcity uncertainties, and future research directions for improving human behavior modeling.« less
  2. Sustainable provision of food, energy and clean water requires understanding of the interdependencies among systems as well as the motivations and incentives of farmers and rural policy makers. Agriculture lies at the heart of interactions among food, energy and water systems. It is an increasingly energy intensive enterprise, but is also a growing source of energy. Agriculture places large demands on water supplies while poor practices can degrade water quality. Each of these interactions creates opportunities for modeling driven by sensor-based and qualitative data collection to improve the effectiveness of system operation and control in the short term as well as investments and planning for the long term. The large volume and complexity of the data collected creates challenges for decision support and stakeholder communication. The DataFEWSion National Research Traineeship program aims to build a community of researchers that explores, develops and implements effective data-driven decision-making to efficiently produce food, transform primary energy sources into energy carriers, and enhance water quality. The initial cohort includes PhD students in agricultural and biosystems, chemical, and industrial engineering as well as statistics and crop production and physiology. The project aims to prepare trainees for multiple career paths such as research scientist, bioeconomy entrepreneur,more »agribusiness leader, policy maker, agriculture analytics specialist, and professor. The traineeship has four key components. First, trainees will complete a new graduate certificate to build competencies in fundamental understanding of interactions among food production, water quality and bioenergy; data acquisition, visualization, and analytics; complex systems modeling for decision support; and the economics, policy and sociology of the FEW nexus. Second, they will conduct interdisciplinary research on (a) technologies and practices to increase agriculture’s contributions to energy supply while reducing its negative impacts on water quality and human health; (b) data science to increase crop productivity within the constraints of sustainable intensification; or (c) decision sciences to manage tradeoffs and promote best practices among diverse stakeholders. Third, they will participate in a new graduate learning community to consist of a two-year series of workshops that focus in alternate years on the context of the Midwest agricultural FEW nexus and professional development; and fourth, they will have small-group experiences to promote collaboration and peer review. Each trainee will create and curate a portfolio that combines artifacts from coursework and research with reflections on the broader impacts of their work. Trainee recruitment emphasizes women and underrepresented groups.« less
  3. null (Ed.)
    Growing demand for water resources coupled with climate-driven water scarcity and variability present critical challenges to agriculture in the Western US. Despite extensive resources allocated to downscaling climate projections and advances in understanding past, current, and future climatic conditions, climate information is underutilized in decisions made by agricultural producers. Climate information providers need to understand why this information is underutilized and what would better meet the needs of producers. To better understand how agricultural producers perceive and utilize climate information, we conducted five focus groups with farmers and ranchers across Montana. Focus groups revealed that there are fundamental scalar issues (spatial and temporal) that make climate information challenging for producers to use. While climate information is typically produced at regional, national, or global spatial scales and at a seasonal and mid- to end-of-century temporal scales, producers indicated that decision-making takes place at multiple intermediate and small temporal and spatial scales. In addition, producers described other drivers of decision-making that have little to do with climate information itself, but rather aspects of source credibility, past experience, trust in information, and the politics of climate change. Through engaging directly with end-users, climate information providers can better understand the spatial and temporal scalesmore »that align with different types of agricultural producers and decisions, as well as the limitations of information provision given the complexity of the decision context. Increased engagement between climate information providers and end-users can also address the important tradeoffs that exist between scale and uncertainty.« less
  4. Despite decades of policy that strives to reduce nutrient and sediment export from agricultural fields, surface water quality in intensively managed agricultural landscapes remains highly degraded. Recent analyses show that current conservation efforts are not sufficient to reverse widespread water degradation in Midwestern agricultural systems. Intensifying row crop agriculture and increasing climate pressure require a more integrated approach to water quality management that addresses diverse sources of nutrients and sediment and off-field mitigation actions. We used multiobjective optimization analysis and integrated three biophysical models to evaluate the cost-effectiveness of alternative portfolios of watershed management practices at achieving nitrate and suspended sediment reduction goals in an agricultural basin of the Upper Midwestern United States. Integrating watershed-scale models enabled the inclusion of near-channel management alongside more typical field management and thus directly the comparison of cost-effectiveness across portfolios. The optimization analysis revealed that fluvial wetlands (i.e., wide, slow-flowing, vegetated water bodies within the riverine corridor) are the single-most cost-effective management action to reduce both nitrate and sediment loads and will be essential for meeting moderate to aggressive water quality targets. Although highly cost-effective, wetland construction was costly compared to other practices, and it was not selected in portfolios at low investment levels.more »Wetland performance was sensitive to placement, emphasizing the importance of watershed scale planning to realize potential benefits of wetland restorations. We conclude that extensive interagency cooperation and coordination at a watershed scale is required to achieve substantial, economically viable improvements in water quality under intensive row crop agricultural production.

    « less
  5. Abstract Measuring soil health indicators (SHIs), particularly soil total nitrogen (TN), is an important and challenging task that affects farmers’ decisions on timing, placement, and quantity of fertilizers applied in the farms. Most existing methods to measure SHIs are in-lab wet chemistry or spectroscopy-based methods, which require significant human input and effort, time-consuming, costly, and are low-throughput in nature. To address this challenge, we develop an artificial intelligence (AI)-driven near real-time unmanned aerial vehicle (UAV)-based multispectral sensing solution (UMS) to estimate soil TN in an agricultural farm. TN is an important macro-nutrient or SHI that directly affects the crop health. Accurate prediction of soil TN can significantly increase crop yield through informed decision making on the timing of seed planting, and fertilizer quantity and timing. The ground-truth data required to train the AI approaches is generated via laser-induced breakdown spectroscopy (LIBS), which can be readily used to characterize soil samples, providing rapid chemical analysis of the samples and their constituents (e.g., nitrogen, potassium, phosphorus, calcium). Although LIBS was previously applied for soil nutrient detection, there is no existing study on the integration of LIBS with UAV multispectral imaging and AI. We train two machine learning (ML) models including multi-layer perceptronmore »regression and support vector regression to predict the soil nitrogen using a suite of data classes including multispectral characteristics of the soil and crops in red (R), near-infrared, and green (G) spectral bands, computed vegetation indices (NDVI), and environmental variables including air temperature and relative humidity (RH). To generate the ground-truth data or the training data for the machine learning models, we determine the N spectrum of the soil samples (collected from a farm) using LIBS and develop a calibration model using the correlation between actual TN of the soil samples and the maximum intensity of N spectrum. In addition, we extract the features from the multispectral images captured while the UAV follows an autonomous flight plan, at different growth stages of the crops. The ML model’s performance is tested on a fixed configuration space for the hyper-parameters using various hyper-parameter optimization techniques at three different wavelengths of the N spectrum.« less