skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Manipulating strong electromagnetic fields with the average transverse momentum of relativistic nuclear collisions
Abstract We show that an event-shape engineering based on the mean transverse momentum of charged hadrons, $$[p_t]$$ [ p t ] , provides an optimal handle on the strength of the magnetic field created in central heavy-ion collisions at high energy. This is established through quantitative evaluations of the correlation existing between the event-by-event magnetic field produced by the spectator protons in 5.02 TeV Pb + Pb collisions and the event-by-event $$[p_t]$$ [ p t ] at a given collision centrality. We argue that the event selection based on $$[p_t]$$ [ p t ] provides a better handle on the magnetic field than the more traditional selection based on the event ellipticities. Advantages brought by this new method for the experimental search of the chiral magnetic effect are discussed.  more » « less
Award ID(s):
2012922
PAR ID:
10333908
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The European Physical Journal A
Volume:
57
Issue:
7
ISSN:
1434-6001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Heavy quarkonium production at high transverse momentum( p_T p T )in hadronic collisions is explored in the QCD factorization approach. Wefind that the leading power in the 1/p_T 1 / p T expansion is responsible for high p_T p T regime, while the next-to-leading power contribution is necessary forthe low p_T p T region. We present the first numerical analysis of the scale evolutionof coupled twist-2 and twist-4 fragmentation functions (FFs) for heavyquarkonium production and demonstrate that the QCD factorizationapproach is capable of describing the p_T p T spectrum of hadronic J/\psi J / ψ production at the LHC. 
    more » « less
  2. A bstract We report about the properties of the underlying event measured with ALICE at the LHC in pp and p–Pb collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV. The event activity, quantified by charged-particle number and summed- p T densities, is measured as a function of the leading-particle transverse momentum $$ \left({p}_{\textrm{T}}^{\textrm{trig}}\right) $$ p T trig . These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different p T thresholds (0.15, 0.5 and 1 GeV/ c ) at mid-pseudorapidity (| η | < 0 . 8). The event activity in the transverse region, which is the most sensitive to the underlying event, exhibits similar behaviour in both pp and p–Pb collisions, namely, a steep increase with $$ {p}_{\textrm{T}}^{\textrm{trig}} $$ p T trig for low $$ {p}_{\textrm{T}}^{\textrm{trig}} $$ p T trig , followed by a saturation at $$ {p}_{\textrm{T}}^{\textrm{trig}}\approx 5 $$ p T trig ≈ 5 GeV/ c . The results from pp collisions are compared with existing measurements at other centre-of-mass energies. The quantities in the toward and away regions are also analyzed after the subtraction of the contribution measured in the transverse region. The remaining jet-like particle densities are consistent in pp and p–Pb collisions for $$ {p}_{\textrm{T}}^{\textrm{trig}}>10 $$ p T trig > 10 GeV/ c , whereas for lower $$ {p}_{\textrm{T}}^{\textrm{trig}} $$ p T trig values the event activity is slightly higher in p–Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators. 
    more » « less
  3. Abstract Measurements of event-by-event fluctuations of charged-particle multiplicities in Pb–Pb collisions at $$\sqrt{s_{\mathrm {NN}}}$$ s NN   $$=$$ =  2.76 TeV using the ALICE detector at the CERN Large Hadron Collider (LHC) are presented in the pseudorapidity range $$|\eta |<0.8$$ | η | < 0.8 and transverse momentum $$0.2< p_{\mathrm{T}} < 2.0$$ 0.2 < p T < 2.0  GeV/ c . The amplitude of the fluctuations is expressed in terms of the variance normalized by the mean of the multiplicity distribution. The $$\eta $$ η and $$p_{\mathrm{T}}$$ p T dependences of the fluctuations and their evolution with respect to collision centrality are investigated. The multiplicity fluctuations tend to decrease from peripheral to central collisions. The results are compared to those obtained from HIJING and AMPT Monte Carlo event generators as well as to experimental data at lower collision energies. Additionally, the measured multiplicity fluctuations are discussed in the context of the isothermal compressibility of the high-density strongly-interacting system formed in central Pb–Pb collisions. 
    more » « less
  4. Abstract Event-by-event fluctuations of the event-wise mean transverse momentum,$$\langle p_{\textrm{T}}\rangle $$ p T , of charged particles produced in proton–proton (pp) collisions at$$\sqrt{s}$$ s = 5.02 TeV, Xe–Xe collisions at$$\sqrt{s_{\textrm{NN}}}$$ s NN = 5.44 TeV, and Pb–Pb collisions at$$\sqrt{s_{\textrm{NN}}}$$ s NN = 5.02 TeV are studied using the ALICE detector based on the integral correlator$$\langle \!\langle \Delta p_\textrm{T}\Delta p_\textrm{T}\rangle \!\rangle $$ Δ p T Δ p T . The correlator strength is found to decrease monotonically with increasing produced charged-particle multiplicity measured at midrapidity in all three systems. In Xe–Xe and Pb–Pb collisions, the multiplicity dependence of the correlator deviates significantly from a simple power-law scaling as well as from the predictions of the HIJING and AMPT models. The observed deviation from power-law scaling is expected from transverse radial flow in semicentral to central Xe–Xe and Pb–Pb collisions. In pp collisions, the correlation strength is also studied by classifying the events based on the transverse spherocity,$$S_0$$ S 0 , of the particle production at midrapidity, used as a proxy for the presence of a pronounced back-to-back jet topology. Low-spherocity (jetty) events feature a larger correlation strength than those with high spherocity (isotropic). The strength and multiplicity dependence of jetty and isotropic events are well reproduced by calculations with the PYTHIA 8 and EPOS LHC models. 
    more » « less
  5. Abstract The ALICE Collaboration at the CERN LHC has measured the inclusive production cross section of isolated photons at midrapidity as a function of the photon transverse momentum ($$p_{\textrm{T}}^{\gamma }$$ p T γ ), in Pb–Pb collisions in different centrality intervals, and in pp collisions, at centre-of-momentum energy per nucleon pair of$$\sqrt{s_{\textrm{NN}}}~=~5.02$$ s NN = 5.02  TeV. The photon transverse momentum range is between 10–14 and 40–140 GeV/$$c$$ c , depending on the collision system and on the Pb–Pb centrality class. The result extends to lower$$p_{\textrm{T}}^{\gamma }$$ p T γ than previously published results by the ATLAS and CMS experiments at the same collision energy. The covered pseudorapidity range is$$|\eta ^{\gamma } | <0.67$$ | η γ | < 0.67 . The isolation selection is based on a charged particle isolation momentum threshold$$p_{\textrm{T}}^\mathrm{iso,~ch} = 1.5$$ p T iso , ch = 1.5  GeV/$$c$$ c within a cone of radii$$R=0.2$$ R = 0.2 and 0.4. The nuclear modification factor is calculated and found to be consistent with unity in all centrality classes, and also consistent with the HG-PYTHIA model, which describes the event selection and geometry biases that affect the centrality determination in peripheral Pb–Pb collisions. The measurement is compared to next-to-leading order perturbative QCD calculations and to the measurements of isolated photons and Z$$^{0}$$ 0 bosons from the CMS experiment, which are all found to be in agreement. 
    more » « less