skip to main content

This content will become publicly available on August 1, 2023

Title: Learning Explainable Templated Graphical Model
Templated graphical models (TGMs) encode model structure using rules that capture recurring relationships between multiple random variables. While the rules in TGMs are interpretable, it is not clear how they can be used to generate explanations for the individual predictions of the model. Further, learning these rules from data comes with high computational costs: it typically requires an expensive combinatorial search over the space of rules and repeated optimization over rule weights. In this work, we propose a new structure learning algorithm, Explainable Structured Model Search (ESMS), that learns a templated graphical model and an explanation framework for its predictions. ESMS uses a novel search procedure to efficiently search the space of models and discover models that trade-off predictive accuracy and explainability. We introduce the notion of relational stability and prove that our proposed explanation framework is stable. Further, our proposed piecewise pseudolikelihood (PPLL) objective does not require re-optimizing the rule weights across models during each iteration of the search. In our empirical evaluation on three realworld datasets, we show that our proposed approach not only discovers models that are explainable, but also significantly outperforms existing state-out-the-art structure learning approaches.
; ;
Award ID(s):
Publication Date:
Journal Name:
Uncertainty in artificial intelligence
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Statistical relational learning (SRL) frameworks are effective at defining probabilistic models over complex relational data. They often use weighted first-order logical rules where the weights of the rules govern probabilistic interactions and are usually learned from data. Existing weight learning approaches typically attempt to learn a set of weights that maximizes some function of data likelihood; however, this does not always translate to optimal performance on a desired domain metric, such as accuracy or F1 score. In this paper, we introduce a taxonomy of search-based weight learning approaches for SRL frameworks that directly optimize weights on a chosen domain performance metric. To effectively apply these search-based approaches, we introduce a novel projection, referred to as scaled space (SS), that is an accurate representation of the true weight space. We show that SS removes redundancies in the weight space and captures the semantic distance between the possible weight configurations. In order to improve the efficiency of search, we also introduce an approximation of SS which simplifies the process of sampling weight configurations. We demonstrate these approaches on two state-of-the-art SRL frameworks: Markov logic networks and probabilistic soft logic. We perform empirical evaluation on five real-world datasets and evaluate them eachmore »on two different metrics. We also compare them against four other weight learning approaches. Our experimental results show that our proposed search-based approaches outperform likelihood-based approaches and yield up to a 10% improvement across a variety of performance metrics. Further, we perform an extensive evaluation to measure the robustness of our approach to different initializations and hyperparameters. The results indicate that our approach is both accurate and robust.« less
  2. In this work, we examine online collective inference, the problem of maintaining and performing inference over a sequence of evolving graphical models. We utilize templated graphical models (TGM), a general class of graphical models expressed via templates and instantiated with data. A key challenge is minimizing the cost of instantiating the updated model. To address this, we define a class of exact and approximate context-aware methods for updating an existing TGM. These methods avoid a full re-instantiation by using the context of the updates to only add relevant components to the graphical model. Further, we provide stability bounds for the general online inference problem and regret bounds for a proposed approximation. Finally, we implement our approach in probabilistic soft logic, and test it on several online collective inference tasks. Through these experiments we verify the bounds on regret and stability, and show that our approximate online approach consistently runs two to five times faster than the offline alternative while, surprisingly, maintaining the quality of the predictions.
  3. FOLD-R is an automated inductive learning algorithm for learning default rules for mixed (numerical and categorical) data. It generates an (explainable) normal logic program (NLP) rule set for classification tasks. We present an improved FOLD-R algorithm, called FOLD-R++, that significantly increases the efficiency and scalability of FOLD-R by orders of magnitude. FOLD-R++ improves upon FOLD-R without compromising or losing information in the input training data during the encoding or feature selection phase. The FOLD-R++ algorithm is competitive in performance with the widely-used XGBoost algorithm, however, unlike XGBoost, the FOLD-R++ algorithm produces an explainable model. FOLD-R++ is also competitive in performance with the RIPPER system, however, on large datasets FOLD-R++ outperforms RIPPER. We also create a powerful tool-set by combining FOLD-R++ with s(CASP)—a goal-directed answer set programming (ASP) execution engine—to make predictions on new data samples using the normal logic program generated by FOLD-R++. The s(CASP) system also produces a justification for the prediction. Experiments presented in this paper show that our improved FOLD-R++ algorithm is a significant improvement over the original design and that the s(CASP) system can make predictions in an efficient manner as well.
  4. The neural plausibility of backpropagation has long been disputed, primarily for its use of non-local weight transport — the biologically dubious requirement that one neuron instantaneously measure the synaptic weights of another. Until recently, attempts to create local learning rules that avoid weight transport have typically failed in the large-scale learning scenarios where backpropagation shines, e.g. ImageNet categorization with deep convolutional networks. Here, we investigate a recently proposed local learning rule that yields competitive performance with backpropagation and find that it is highly sensitive to metaparameter choices, requiring laborious tuning that does not transfer across network architecture. Our analysis indicates the underlying mathematical reason for this instability, allowing us to identify a more robust local learning rule that better transfers without metaparameter tuning. Nonetheless, we find a performance and stability gap between this local rule and backpropagation that widens with increasing model depth. We then investigate several non-local learning rules that relax the need for instantaneous weight transport into a more biologically-plausible "weight estimation" process, showing that these rules match state-of-the-art performance on deep networks and operate effectively in the presence of noisy updates. Taken together, our results suggest two routes towards the discovery of neural implementations for credit assignmentmore »without weight symmetry: further improvement of local rules so that they perform consistently across architectures and the identification of biological implementations for non-local learning mechanisms.« less
  5. We propose an explainable approach for relation extraction that mitigates the tension between generalization and explainability by jointly training for the two goals. Our approach uses a multi-task learning architecture, which jointly trains a classifier for relation extraction, and a sequence model that labels words in the context of the relation that explain the decisions of the relation classifier. We also convert the model outputs to rules to bring global explanations to this approach. This sequence model is trained using a hybrid strategy: supervised, when supervision from pre-existing patterns is available, and semi-supervised otherwise. In the latter situation, we treat the sequence model’s labels as latent variables, and learn the best assignment that maximizes the performance of the relation classifier. We evaluate the proposed approach on the two datasets and show that the sequence model provides labels that serve as accurate explanations for the relation classifier’s decisions, and, importantly, that the joint training generally improves the performance of the relation classifier. We also evaluate the performance of the generated rules and show that the new rules are great add-on to the manual rules and bring the rule-based system much closer to the neural models.