skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Neural Compositional Rule Learning for Knowledge Graph Reasoning
Learning logical rules is critical to improving reasoning in KGs. This is due to their ability to provide logical and interpretable explanations when used for predictions, as well as their ability to generalize to other tasks, domains, and data. While recent methods have been proposed to learn logical rules, the majority of these methods are either restricted by their computational complexity and cannot handle the large search space of large-scale KGs, or show poor generalization when exposed to data outside the training set. In this paper, we propose an endto-end neural model for learning compositional logical rules called NCRL. NCRL detects the best compositional structure of a rule body, and breaks it into small compositions in order to infer the rule head. By recurrently merging compositions in the rule body with a recurrent attention unit, NCRL finally predicts a single rule head. Experimental results show that NCRL learns high-quality rules, as well as being generalizable. Specifically, we show that NCRL is scalable, efficient, and yields state-of-the-art results for knowledge graph completion on large-scale KGs. Moreover, we test NCRL for systematic generalization by learning to reason on small-scale observed graphs and evaluating on larger unseen ones.  more » « less
Award ID(s):
2211557 1937599
PAR ID:
10464381
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Learning Representations (ICLR)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Answering complex First-Order Logical (FOL) queries on large-scale incomplete knowledge graphs (KGs) is an important yet challenging task. Recent advances embed logical queries and KG entities in the same space and conduct query answering via dense similarity search. However, most logical operators designed in previous studies do not satisfy the axiomatic system of classical logic, limiting their performance. Moreover, these logical operators are parameterized and thus require many complex FOL queries as training data, which are often arduous to collect or even inaccessible in most real-world KGs. We thus present FuzzQE, a fuzzy logic based logical query embedding framework for answering FOL queries over KGs. FuzzQE follows fuzzy logic to define logical operators in a principled and learning-free manner, where only entity and relation embeddings require learning. FuzzQE can further benefit from labeled complex logical queries for training. Extensive experiments on two benchmark datasets demonstrate that FuzzQE provides significantly better performance in answering FOL queries compared to state-of-the-art methods. In addition, FuzzQE trained with only KG link prediction can achieve comparable performance to those trained with extra complex query data. 
    more » « less
  2. The problem of knowledge graph (KG) reasoning has been widely explored by traditional rule-based systems and more recently by knowledge graph embedding methods. While logical rules can capture deterministic behavior in a KG, they are brittle and mining ones that infer facts beyond the known KG is challenging. Probabilistic embedding methods are effective in capturing global soft statistical tendencies and reasoning with them is computationally efficient. While embedding representations learned from rich training data are expressive, incompleteness and sparsity in real-world KGs can impact their effectiveness. We aim to leverage the complementary properties of both methods to develop a hybrid model that learns both high-quality rules and embeddings simultaneously. Our method uses a cross feedback paradigm wherein an embedding model is used to guide the search of a rule mining system to mine rules and infer new facts. These new facts are sampled and further used to refine the embedding model. Experiments on multiple benchmark datasets show the effectiveness of our method over other competitive standalone and hybrid baselines. We also show its efficacy in a sparse KG setting. 
    more » « less
  3. null (Ed.)
    Humans easily interpret expressions that describe unfamiliar situations composed from familiar parts ("greet the pink brontosaurus by the ferris wheel"). Modern neural networks, by contrast, struggle to interpret novel compositions. In this paper, we introduce a new benchmark, gSCAN, for evaluating compositional generalization in situated language understanding. Going beyond a related benchmark that focused on syntactic aspects of generalization, gSCAN defines a language grounded in the states of a grid world, facilitating novel evaluations of acquiring linguistically motivated rules. For example, agents must understand how adjectives such as 'small' are interpreted relative to the current world state or how adverbs such as 'cautiously' combine with new verbs. We test a strong multi-modal baseline model and a state-of-the-art compositional method finding that, in most cases, they fail dramatically when generalization requires systematic compositional rules. 
    more » « less
  4. null (Ed.)
    Many aspects of human reasoning, including language, require learning rules from very little data. Humans can do this, often learning systematic rules from very few examples, and combining these rules to form compositional rule-based systems. Current neural architectures, on the other hand, often fail to generalize in a compositional manner, especially when evaluated in ways that vary systematically from training. In this work, we present a neuro-symbolic model which learns entire rule systems from a small set of examples. Instead of directly predicting outputs from inputs, we train our model to induce the explicit system of rules governing a set of previously seen examples, drawing upon techniques from the neural program synthesis literature. Our rule-synthesis approach outperforms neural meta-learning techniques in three domains: an artificial instruction-learning domain used to evaluate human learning, the SCAN challenge datasets, and learning rule-based translations of number words into integers for a wide range of human languages. 
    more » « less
  5. Answering complex logical queries on large-scale incomplete knowledge graphs (KGs) is a fundamental yet challenging task. Recently, a promising approach to this problem has been to embed KG entities as well as the query into a vector space such that entities that answer the query are embedded close to the query. However, prior work models queries as single points in the vector space, which is problematic because a complex query represents a potentially large set of its answer entities, but it is unclear how such a set can be represented as a single point. Furthermore, prior work can only handle queries that use conjunctions (^) and existential quantifiers (9). Handling queries with logical disjunctions (_) remains an open problem. Here we propose QUERY2BOX, an embedding-based framework for reasoning over arbitrary queries with ^, _, and 9 operators in massive and incomplete KGs. Our main insight is that queries can be embedded as boxes (i.e., hyper-rectangles), where a set of points inside the box corresponds to a set of answer entities of the query. We show that conjunctions can be naturally represented as intersections of boxes and also prove a negative result that handling disjunctions would require embedding with dimension proportional to the number of KG entities. However, we show that by transforming queries into a Disjunctive Normal Form, QUERY2BOX is capable of handling arbitrary logical queries with ^, _, 9 in a scalable manner. We demonstrate the effectiveness of QUERY2BOX on three large KGs and show that QUERY2BOX achieves up to 25% relative improvement over the state of the art. 
    more » « less