ABSTRACT We simulate shaking in Tacoma, Washington, and surrounding areas from Mw 6.5 and 7.0 earthquakes on the Tacoma fault. Ground motions are directly modeled up to 2.5 Hz using kinematic, finite-fault sources; a 3D seismic velocity model considering regional geology; and a model mesh with 30 m sampling at the ground surface. In addition, we explore how adjustments to the seismic velocity model affect predicted shaking over a range of periods. These adjustments include the addition of a region-specific geotechnical gradient, surface topography, and a fault damage zone. We find that the simulated shaking tends to be near estimates from empirical ground-motion models (GMMs). However, long-period (T = 5.0 s) shaking within the Tacoma basin is typically underpredicted by the GMMs. The fit between simulated and GMM-derived short-period (T = 0.5 s) shaking is significantly improved with the addition of the geotechnical gradient. From comparing different Mw 6.5 earthquake scenarios, we also find that the response of the Tacoma basin is sensitive to the azimuth of incoming seismic waves. In adding surface topography to the simulation, we find that average ground motion is similar to that produced from the nontopography model. However, shaking is often amplified at topographic highs and deamplified at topographic lows, and the wavefield undergoes extensive scattering. Adding a fault damage zone has the effect of amplifying short-period shaking adjacent to the fault, while reducing far-field shaking. Intermediate-period shaking is amplified within the Tacoma basin, likely due to enhanced surface-wave generation attributable to the fault damage zone waveguide. When applied in the same model, the topography and fault damage zone adjustments often enhance or reduce the effects of one another, adding further complexity to the wavefield. These results emphasize the importance of improving near-surface velocity model resolution as waveform simulations progress toward higher frequencies. 
                        more » 
                        « less   
                    
                            
                            Topographic Response to Simulated Mw 6.5–7.0 Earthquakes on the Seattle Fault
                        
                    
    
            ABSTRACT We explore the response of ground motions to topography during large crustal fault earthquakes by simulating several magnitude 6.5–7.0 rupture scenarios on the Seattle fault, Washington State. Kinematic simulations are run using a 3D spectral element code and a detailed seismic velocity model for the Puget Sound region. This model includes realistic surface topography and a near-surface low-velocity layer; a mesh spacing of ∼30 m at the surface allows modeling of ground motions up to 3 Hz. We simulate 20 earthquake scenarios using different slip distributions and hypocenter locations on a planar fault surface. Results indicate that average ground motions in simulations with and without topography are similar. However, shaking amplification is common at topographic highs, and more than a quarter of all sites experience short-period (≤2 s) ground-motion amplification greater than 25%–35%, compared with models without topography. Comparisons of peak ground velocity at the top and bottom of topographic features demonstrate that amplification is sensitive to period, with the greatest amplifications typically manifesting near a topographic feature’s estimated resonance frequency and along azimuths perpendicular to its primary axis of elongation. However, interevent variability in topographic response can be significant, particularly at shorter periods (<1 s). We do not observe a clear relationship between source centroid-to-site azimuths and the strength of topographic amplification. Overall, our results suggest that although topographic resonance does influence the average ground motions, other processes (e.g., localized focusing and scattering) also play a significant role in determining topographic response. However, the amount of consistent, significant amplification due to topography suggests that topographic effects should likely be considered in some capacity during seismic hazard studies. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1953710
- PAR ID:
- 10334031
- Date Published:
- Journal Name:
- Bulletin of the Seismological Society of America
- Volume:
- 112
- Issue:
- 3
- ISSN:
- 0037-1106
- Page Range / eLocation ID:
- 1436 to 1462
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The ShakeOut scenario of an M 7.8 northwestward rupture on the southern San Andreas fault (SSAF) (Jones et al., 2008) predicted significant long-period ground-motion amplification in the greater Los Angeles, California, area, caused by a waveguide from interconnected sedimentary basins. However, the early ShakeOut ground-motion simulations omitted important model features with immature versions of the velocity structure and fault geometry. Here, we present 0–1 Hz 3D numerical wave propagation simulations for the ShakeOut scenario including surface topography, as well as updated high-resolution velocity structures and SSAF geometry. Spectral accelerations at 3 s are increased by the local high-resolution basin models (25%–45%) but decreased from complexity in velocity and density updates outside the basins (65%–100%) and inclusion of surface topography (∼30%). The updated model reduces the simulated long-period ground motions in the waveguide by 60%–70%, bringing the predictions significantly closer to the values by a leading Next Generation Attenuation-West2 ground-motion model.more » « less
- 
            SUMMARY We have simulated 0–5 Hz deterministic wave propagation for a suite of 17 models of the 2014 Mw 5.1 La Habra, CA, earthquake with the Southern California Earthquake Center Community Velocity Model Version S4.26-M01 using a finite-fault source. Strong motion data at 259 sites within a 148 km × 140 km area are used to validate our simulations. Our simulations quantify the effects of statistical distributions of small-scale crustal heterogeneities (SSHs), frequency-dependent attenuation Q(f), surface topography and near-surface low-velocity material (via a 1-D approximation) on the resulting ground motion synthetics. The shear wave quality factor QS(f) is parametrized as QS, 0 and QS, 0fγ for frequencies less than and higher than 1 Hz, respectively. We find the most favourable fit to data for models using ratios of QS, 0 to shear wave velocity VS of 0.075–1.0 and γ values less than 0.6, with the best-fitting amplitude drop-off for the higher frequencies obtained for γ values of 0.2–0.4. Models including topography and a realistic near-surface weathering layer tend to increase peak velocities at mountain peaks and ridges, with a corresponding decrease behind the peaks and ridges in the direction of wave propagation. We find a clear negative correlation between the effects on peak ground velocity amplification and duration lengthening, suggesting that topography redistributes seismic energy from the large-amplitude first arrivals to the adjacent coda waves. A weathering layer with realistic near-surface low velocities is found to enhance the amplification at mountain peaks and ridges, and may partly explain the underprediction of the effects of topography on ground motions found in models. Our models including topography tend to improve the fit to data, as compared to models with a flat free surface, while our distributions of SSHs with constraints from borehole data fail to significantly improve the fit. Accuracy of the velocity model, particularly the near-surface low velocities, as well as the source description, controls the resolution with which the anelastic attenuation can be determined. Our results demonstrate that it is feasible to use fully deterministic physics-based simulations to estimate ground motions for seismic hazard analysis up to 5 Hz. Here, the effects of, and trade-offs with, near-surface low-velocity material, topography, SSHs and Q(f) become increasingly important as frequencies increase towards 5 Hz, and should be included in the calculations. Future improvement in community velocity models, wider access to computational resources, more efficient numerical codes and guidance from this study are bound to further constrain the ground motion models, leading to more accurate seismic hazard analysis.more » « less
- 
            Abstract The Húsavík‐Flatey Fault Zone (HFFZ) is the largest strike‐slip fault in Iceland and poses a high seismic risk to coastal communities. To investigate physics‐based constraints on earthquake hazards, we construct three fault system models of varying geometric complexity and model 79 3‐D multi‐fault dynamic rupture scenarios in the HFFZ. By assuming a simple regional prestress and varying hypocenter locations, we analyze the rupture dynamics, fault interactions, and the associated ground motions up to 2.5 Hz. All models account for regional seismotectonics, topo‐bathymetry, 3‐D subsurface velocity, viscoelastic attenuation, and off‐fault plasticity, and we explore the effect of fault roughness. The rupture scenarios obey earthquake scaling relations and predict magnitudes comparable to those of historical events. We show how fault system geometry and segmentation, hypocenter location, and prestress can affect the potential for rupture cascading, leading to varying slip distributions across different portions of the fault system. Our earthquake scenarios yield spatially heterogeneous near‐field ground motions modulated by geometric complexities, topography, and rupture directivity, particularly in the near‐field. The average ground motion attenuation characteristics of dynamic rupture scenarios of comparable magnitudes and mean stress drop are independent of variations in source complexity, magnitude‐consistent and in good agreement with the latest regional empirical ground motion models. However, physics‐based ground motion variability changes considerably with fault‐distance and increases for unilateral compared to bilateral ruptures. Systematic variations in physics‐based near‐fault ground motions provide important insights into the mechanics and potential earthquake hazard of large strike‐slip fault systems, such as the HFFZ.more » « less
- 
            ABSTRACT A depletion of high-frequency ground motions on soil sites has been observed in recent large earthquakes and is often attributed to a nonlinear soil response. Here, I show that the reduced amplitudes of high-frequency horizontal-to-vertical spectral ratios (HVSRs) on soil can also be caused by a smooth crustal velocity model with low shear-wave velocities underneath soil sites. I calculate near-fault ground motions using both 2D dynamic rupture simulations and point-source models for both rock and soil sites. The 1D velocity models used in the simulations are derived from empirical relationships between seismic wave velocities and depths in northern California. The simulations for soil sites feature lower shear-wave velocities and thus larger Poisson’s ratios at shallow depths than those for rock sites. The lower shear-wave velocities cause slower shallow rupture and smaller shallow slip, but both soil and rock simulations have similar rupture speeds and slip for the rest of the fault. However, the simulated near-fault ground motions on soil and rock sites have distinct features. Compared to ground motions on rock, horizontal ground acceleration on soil is only amplified at low frequencies, whereas vertical ground acceleration is deamplified for the whole frequency range. Thus, the HVSRs on soil exhibit a depletion of high-frequency energy. The comparison between smooth and layered velocity models demonstrates that the smoothness of the velocity model plays a critical role in the contrasting behaviors of HVSRs on soil and rock for different rupture styles and velocity profiles. The results reveal the significant role of shallow crustal velocity structure in the generation of high-frequency ground motions on soil sites.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    