skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Artificial atoms from cold bosons in one dimension
Abstract We investigate the ground-state properties of weakly repulsive one-dimensional bosons in the presence of an attractive zero-range impurity potential. First, we derive mean-field solutions to the problem on a finite ring for the two asymptotic cases: (i) all bosons are bound to the impurity and (ii) all bosons are in a scattering state. Moreover, we derive the critical line that separates these regimes in the parameter space. In the thermodynamic limit, this critical line determines the maximum number of bosons that can be bound by the impurity potential, forming an artificial atom. Second, we validate the mean-field results using the flow equation approach and the multi-layer multi-configuration time-dependent Hartree method for atomic mixtures. While beyond-mean-field effects destroy long-range order in the Bose gas, the critical boson number is unaffected. Our findings are important for understanding such artificial atoms in low-density Bose gases with static and mobile impurities.  more » « less
Award ID(s):
2116679
PAR ID:
10334105
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
New Journal of Physics
ISSN:
1367-2630
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate the formation of magnetic Bose polaron, an impurity atom dressed by spin-wave excitations, in a one-dimensional spinor Bose gas. Within an effective potential model, the impurity is strongly confined by the host excitations which can even overcome the impurity-medium repulsion leading to a self-localized quasi-particle state. The phase diagram of the attractive and self-bound repulsive magnetic polaron, repulsive non-magnetic (Fröhlich-type) polaron and impurity-medium phase-separation regimes is explored with respect to the Rabi-coupling between the spin components, spin–spin interactions and impurity-medium coupling. The residue of such magnetic polarons decreases substantially in both strong attractive and repulsive branches with strong impurity-spin interactions, illustrating significant dressing of the impurity. The impurity can be used to probe and maneuver the spin polarization of the magnetic medium while suppressing ferromagnetic spin–spin correlations. It is shown that mean-field theory fails as the spinor gas approaches immiscibility since the generated spin-wave excitations are prominent. Our findings illustrate that impurities can be utilized to generate controllable spin–spin correlations and magnetic polaron states which can be realized with current cold atom setups. 
    more » « less
  2. Recent studies have demonstrated that higher than two-body bath-impurity correlations are not important for quantitatively describing the ground state of the Bose polaron. Motivated by the above, we employ the so-called Gross Ansatz (GA) approach to unravel the stationary and dynamical properties of the homogeneous one-dimensional Bose-polaron for different impurity momenta and bath-impurity couplings. We explicate that the character of the equilibrium state crossovers from the quasi-particle Bose polaron regime to the collective-excitation stationary dark-bright soliton for varying impurity momentum and interactions. Following an interspecies interaction quench the temporal orthogonality catastrophe is identified, provided that bath-impurity interactions are sufficiently stronger than the intraspecies bath ones, thus generalizing the results of the confined case. This catastrophe originates from the formation of dispersive shock wave structures associated with the zero-range character of the bath-impurity potential. For initially moving impurities, a momentum transfer process from the impurity to the dispersive shock waves via the exerted drag force is demonstrated, resulting in a final polaronic state with reduced velocity. Our results clearly demonstrate the crucial role of non-linear excitations for determining the behavior of the one-dimensional Bose polaron. 
    more » « less
  3. Abstract In this paper, we introduce a novel method for deriving higher order corrections to the mean-field description of the dynamics of interacting bosons. More precisely, we consider the dynamics of N $$d$$ d -dimensional bosons for large N . The bosons initially form a Bose–Einstein condensate and interact with each other via a pair potential of the form $$(N-1)^{-1}N^{d\beta }v(N^\beta \cdot )$$ ( N - 1 ) - 1 N d β v ( N β · ) for $$\beta \in [0,\frac{1}{4d})$$ β ∈ [ 0 , 1 4 d ) . We derive a sequence of N -body functions which approximate the true many-body dynamics in $$L^2({\mathbb {R}}^{dN})$$ L 2 ( R dN ) -norm to arbitrary precision in powers of $$N^{-1}$$ N - 1 . The approximating functions are constructed as Duhamel expansions of finite order in terms of the first quantised analogue of a Bogoliubov time evolution. 
    more » « less
  4. We study a system of ultra-cold dipolar Bose gas atoms confined in a two-dimensional (2D) harmonic trap with a dipolar impurity implanted at the center of the trap. Due to recent experimental progress in dipolar condensates, we focused on calculating properties of dipolar impurity systems that might guide experimentalists if they choose to study impurities in dipolar gases. We used the Gross–Pitaevskii formalism solved numerically via the split-step Crank–Nicolson method. We chose parameters of the background gas to be consistent with dysprosium (Dy), one of the strongest magnetic dipoles and of current experimental interest, and used chromium (Cr), erbium (Er), terbium (Tb), and Dy for the impurity. The dipole moments were aligned by an external field along what was chosen to be the z-axis, and we studied 2D confinements that were perpendicular or parallel to the external field. We show density contour plots for the two confinements, 1D cross-sections of the densities, calculated self-energies of the impurities while varying both number of atoms in the condensate and the symmetry of the trap. We also calculated the time evolution of the density of an initially pure system where an impurity is introduced. Our results show that while the self-energy increases in magnitude with increasing number of particles, it is reduced when the trap anisotropy follows the natural anisotropy of the gas, i.e., elongated along the z-axis in the case of parallel confinement. This work builds upon work conducted in Bose gases with zero-range interactions and demonstrates some of the features that could be found when exploring dipolar impurities in 2D Bose gases. 
    more » « less
  5. Abstract Nonlinear mean field dynamics enables quantum information processing operations that are impossible in linear one‐particle quantum mechanics. In this approach, a register of bosonic qubits (such as neutral atoms or polaritons) is initialized into a symmetric product state through condensation, then subsequently controlled by varying the qubit‐qubit interaction. An experimental implementation of quantum state discrimination, an important subroutine in quantum computation, with a toroidal Bose–Einstein condensate is proposed. The condensed bosons here are atoms, each in the same superposition of angular momenta 0 and , encoding a qubit. A nice feature of the protocol is that only a readout of individual quantized circulation states (not superpositions) is required. 
    more » « less