skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: How Much Energy Can We Harvest Daily for Wearable Applications?
Emerging flexible and stretchable devices open up novel and attractive applications beyond traditional rigid wearable devices. Since the small and flexible form-factor severely limits the battery capacity, energy harvesting (EH) stands out as a critical enabler of new devices. Despite increasing interest in recent years, the capacity of wearable energy harvesting remains unknown. Prior work analyzes the power generated by a single and typically rigid transducer. This choice limits the EH potential and undermines physical flexibility. Moreover, current results do not translate to total harvested energy over a given period, which is crucial from a developer perspective. In contrast, this paper explores the daily energy harvesting potential of combining flexible light and motion energy harvesters. It first presents a multi-modal energy harvesting system design whose inputs are flexible photo-voltaic cells and piezoelectric patches. We measure the generated power under various light intensity and gait speeds. Finally, we construct daily energy harvesting patterns of 9593 users by integrating our measurements with the activity data from the American Time Use Survey. Our results show that the proposed system can harvest on average 0. 6mAh @ 3. 6V per day.  more » « less
Award ID(s):
2114499
NSF-PAR ID:
10334239
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advancements in wearable technology have improved lifestyle and medical practices, enabling personalized care ranging from fitness tracking, to real-time health monitoring, to predictive sensing. Wearable devices serve as an interface between humans and technology; however, this integration is far from seamless. These devices face various limitations such as size, biocompatibility, and battery constraints wherein batteries are bulky, are expensive, and require regular replacement. On-body energy harvesting presents a promising alternative to battery power by utilizing the human body’s continuous generation of energy. This review paper begins with an investigation of contemporary energy harvesting methods, with a deep focus on piezoelectricity. We then highlight the materials, configurations, and structures of such methods for self-powered devices. Here, we propose a novel combination of thin-film composites, kirigami patterns, and auxetic structures to lay the groundwork for an integrated piezoelectric system to monitor and sense. This approach has the potential to maximize energy output by amplifying the piezoelectric effect and manipulating the strain distribution. As a departure from bulky, rigid device design, we explore compositions and microfabrication processes for conformable energy harvesters. We conclude by discussing the limitations of these harvesters and future directions that expand upon current applications for wearable technology. Further exploration of materials, configurations, and structures introduce interdisciplinary applications for such integrated systems. Considering these factors can revolutionize the production and consumption of energy as wearable technology becomes increasingly prevalent in everyday life. 
    more » « less
  2. Wearable devices with sensing, processing and communication capabilities have become feasible with the advances in internet-of-things (IoT) and low power design technologies. Energy harvesting is extremely important for wearable IoT devices due to size and weight limitations of batteries. One of the most widely used energy harvesting sources is photovoltaic cell (PV-cell) owing to its simplicity and high output power. In particular, flexible PV-cells offer great potential for wearable applications. This paper models, for the first time, how bending a PV-cell significantly impacts the harvested energy. Furthermore, we derive an analytical model to quantify the harvested energy as a function of the radius of curvature. We validate the proposed model empirically using a commercial PV-cell under a wide range of bending scenarios, light intensities and elevation angles. Finally, we show that the proposed model can accelerate maximum power point tracking algorithms and increase the harvested energy by up to 25.0%. 
    more » « less
  3. Abstract: This paper aims to develop a novel concept for energy harvesting via flexible inverted flags combining photovoltaic cells with piezoelectric flexible films. Using technology currently available, we have designed and fabricated piezo-pyro-photo-electric harvesters made of polyvinylidene fluoride (PVDF) piezoelectric elements combined with mini solar panels made of silicon. Experimental measurements of the motion dynamics and power generation were collected for the flags when subjected to wind, heat, and light sources simultaneously and individually. Results indicate a significant improvement in energy harvesting capability compared to isolated single piezoelectric devices. Thus, we anticipate a substantial impact of piezo- pyro-photo-electric energy harvesting device applications where remote power generation is needed. The Flag uses flexible piezoelectric and pyroelectric strips and flexible photovoltaic cells panel. The piezo-pyro- simultaneously generates power through movement and heat, respectively, while the photovoltaic cells harvest solar energy to produce electric power. The beauty of this Flag is to develop power day and night depending on the energy sources available. The basic concept is presented and validated by laboratory experiments with controlled airflow, light, and infrared heat. The maximum voltage generated was 60 mV when the Flag was simultaneously exposed to low-level wind, thermal and light energies. 
    more » « less
  4. Abstract

    Key solutions for material selection, processing, and performance of environmentally friendly high‐power generators are addressed. High voltage and high power generation of flexible devices using piezoelectric Bi0.5(Na0.78K0.22)TiO3nanoparticle filler–polydimethylsiloxane (PDMS) elastomeric matrix for a lead‐free piezoelectric composite film on a cellulose paper substrate is demonstrated. To elucidate the principle of power generation by the piezoelectric composite configuration, the dielectric and piezoelectric characteristics of the composite film are investigated and the results are compared with those of theoretical modeling. The paper‐based composite generator produces a large output voltage of ≈100 V and an average current of ≈20 µA (max. ≈30 µA) through tapping stimulation, which is a record‐high performance compared to previously reported flexible lead‐free piezoelectric composite energy harvesters. Moreover, a triboelectric‐hybridized piezoelectric composite device using a micro‐patterned PDMS shows a much higher output voltage of ≈250 V and output power of ≈0.5 mW, which drives 300 light‐emitting diodes. These results prove that a new class of paper‐based and lead‐free energy harvesting device provides a strong possibility for enlarging the functionality and the capability of high‐power scavengers in flexible and wearable electronics such as sensors and medical devices.

     
    more » « less
  5. We demonstrate the first example of a wearable self-charging power system that offers (i) the high-energy harvesting function of a microbial fuel cell (MFC) and (ii) the high-power operation of a supercapacitor through charging and discharging. The MFC uses human skin bacteria as a biocatalyst to transform the chemical energy of human sweat into electrical power through bacterial metabolism, while the integrated supercapacitor stores the generated electricity for constant and high-pulse power generation even with the irregular perspiration of individuals. The all-printed paper-based power system integrates the horizontally structured MFC and the planar supercapacitor, representing the most favorable platform for wearable applications because of its lightweight and easy integrability into other wearable devices. The self-charging wearable system attains higher electrical power and longer-term operational capability, demonstrating considerable potential as a power source for wearable electronics. 
    more » « less