Abstract Outflows and winds launched from young stars play a crucial role in the evolution of protostars and the early stages of planet formation. However, the specific details of the mechanism behind these phenomena, including how they affect the protoplanetary disk structure, are still debated. We present JWST NIRSpec integral field unit observations of atomic and H2lines from 1 to 5.1μm toward the low-mass protostar TMC1A. For the first time, a collimated atomic jet is detected from TMC1A in the [Feii] line at 1.644μm along with corresponding extended H22.12μm emission. Toward the protostar, we detected spectrally broad Hiand Heiemissions with velocities up to 300 km s−1that can be explained by a combination of protostellar accretion and a wide-angle wind. The 2μm continuum dust emission, Hi, Hei, and Oiall show emission from the illuminated outflow cavity wall and scattered line emission. These observations demonstrate the potential of JWST to characterize and reveal new information about the hot inner regions of nearby protostars; in this case, a previously undetected atomic wind and ionized jet in a well-known outflow.
more »
« less
Atomic Shocks in the Outflow of L1551 IRS 5 Identified with SOFIA-upGREAT Observations of [O i]
Abstract We present velocity-resolved Stratospheric Observatory for Infrared Astronomy (SOFIA)/upgrade German REceiver for Astronomy at Terahertz Frequencies observations of [O i ] and [C ii ] lines toward a Class I protostar, L1551 IRS 5, and its outflows. The SOFIA observations detect [O i ] emission toward only the protostar and [C ii ] emission toward the protostar and the redshifted outflow. The [O i ] emission has a width of ∼100 km s −1 only in the blueshifted velocity, suggesting an origin in shocked gas. The [C ii ] lines are narrow, consistent with an origin in a photodissociation region. Differential dust extinction from the envelope due to the inclination of the outflows is the most likely cause of the missing redshifted [O i ] emission. Fitting the [O i ] line profile with two Gaussian components, we find one component at the source velocity with a width of ∼20 km s −1 and another extremely broad component at −30 km s −1 with a width of 87.5 km s −1 , the latter of which has not been seen in L1551 IRS 5. The kinematics of these two components resemble cavity shocks in molecular outflows and spot shocks in jets. Radiative transfer calculations of the [O i ], high- J CO, and H 2 O lines in the cavity shocks indicate that [O i ] dominates the oxygen budget, making up more than 70% of the total gaseous oxygen abundance and suggesting [O]/[H] of ∼1.5 × 10 −4 . Attributing the extremely broad [O i ] component to atomic winds, we estimate an intrinsic mass-loss rate of (1.3 ± 0.8) × 10 −6 M ⊙ yr −1 . The intrinsic mass-loss rates derived from low- J CO, [O i ], and H i are similar, supporting the model of momentum-conserving outflows, where the atomic wind carries most momentum and drives the molecular outflows.
more »
« less
- Award ID(s):
- 1910106
- PAR ID:
- 10334283
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 925
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 93
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context. Protostellar outflows exhibit large variations in their structure depending on the observed gas emission. To understand the origin of the observed variations, it is important to analyze the differences in the observed morphology and kinematics of the different tracers. TheJames WebbSpace Telescope (JWST) allows us to study the physical structure of the protostellar outflow through well-known near-infrared shock tracers in a manner unrivaled by other existing ground-based and space-based telescopes at these wavelengths. Aims. This study analyzes the atomic jet and molecular outflow in the Class I protostar, TMC1A, utilizing spatially resolved [Fe II] and H2lines to characterize the morphology and to identify previously undetected spatial features, and compare them to existing observations of TMC1A and its outflows observed at other wavelengths. Methods. We identified a large number of [Fe II] and H2lines within the G140H, G235H, and G395H gratings of the NIRSpec IFU observations. We analyzed their morphology and position-velocity (PV) diagrams. From the observed [Fe II] line ratios, the extinction toward the jet is estimated. Results. We detected the bipolar Fe jet by revealing, for the first time, the presence of a redshifted atomic jet. Similarly, the red-shifted component of the H2slower wide-angle outflow was observed. The [Fe II] and H2redhifted emission both exhibit significantly lower flux densities compared to their blueshifted counterparts. Additionally, we report the detection of a collimated high-velocity (~100 km s−1), blueshifted H2outflow, suggesting the presence of a molecular jet in addition to the well-known wider angle low-velocity structure. The [Fe II] and H2jets show multiple intensity peaks along the jet axis, which may be associated with ongoing or recent outburst events. In addition to the variation in their intensities, the H2wide-angle outflow exhibits a ring-like structure. The blueshifted H2outflow also shows a left-right brightness asymmetry likely due to interactions with the surrounding ambient medium and molecular outflows. Using the [Fe II] line ratios, the extinction along the atomic jet is estimated to be betweenAV= 10–30 on the blueshifted side, with a trend of decreasing extinction with distance from the protostar. A similarAVis found for the redshifted side, supporting the argument for an intrinsic red-blue outflow lobe asymmetry rather than environmental effects such as extinction. This intrinsic difference revealed by the unprecedented sensitivity of JWST, suggests that younger outflows already exhibit the red-blue side asymmetry more commonly observed toward jets associated with Class II disks.more » « less
-
Abstract Constraining the physical and chemical structure of young embedded disks is crucial for understanding the earliest stages of planet formation. As part of the Early Planet Formation in Embedded Disks Atacama Large Millimeter/submillimeter Array Large Program, we present high spatial resolution (∼0.″1 or ∼15 au) observations of the 1.3 mm continuum and 13 CO J = 2–1, C 18 O J = 2–1, and SO J N = 6 5 –5 4 molecular lines toward the disk around the Class I protostar L1489 IRS. The continuum emission shows a ring-like structure at 56 au from the central protostar and tenuous, optically thin emission extending beyond ∼300 au. The 13 CO emission traces the warm disk surface, while the C 18 O emission originates from near the disk midplane. The coincidence of the radial emission peak of C 18 O with the dust ring may indicate a gap-ring structure in the gaseous disk as well. The SO emission shows a highly complex distribution, including a compact, prominent component at ≲30 au, which is likely to originate from thermally sublimated SO molecules. The compact SO emission also shows a velocity gradient along a direction tilted slightly (∼15°) with respect to the major axis of the dust disk, which we interpret as an inner warped disk in addition to the warp around ∼200 au suggested by previous work. These warped structures may be formed by a planet or companion with an inclined orbit, or by a gradual change in the angular momentum axis during gas infall.more » « less
-
Abstract We investigate the kinematic properties of Galactic H ii regions using radio recombination line (RRL) emission detected by the Australia Telescope Compact Array at 4–10 GHz and the Jansky Very Large Array at 8–10 GHz. Our H ii region sample consists of 425 independent observations of 374 nebulae that are relatively well isolated from other, potentially confusing sources and have a single RRL component with a high signal-to-noise ratio. We perform Gaussian fits to the RRL emission in position-position–velocity data cubes and discover velocity gradients in 178 (42%) of the nebulae with magnitudes between 5 and 200 m s − 1 arcsec − 1 . About 15% of the sources also have an RRL width spatial distribution that peaks toward the center of the nebula. The velocity gradient position angles appear to be random on the sky with no favored orientation with respect to the Galactic plane. We craft H ii region simulations that include bipolar outflows or solid body rotational motions to explain the observed velocity gradients. The simulations favor solid body rotation since, unlike the bipolar outflow kinematic models, they are able to produce both the large, >40 m s − 1 arcsec − 1 , velocity gradients and also the RRL width structure that we observe in some sources. The bipolar outflow model, however, cannot be ruled out as a possible explanation for the observed velocity gradients for many sources in our sample. We nevertheless suggest that most H ii region complexes are rotating and may have inherited angular momentum from their parent molecular clouds.more » « less
-
null (Ed.)ABSTRACT Outflows from supermassive black holes (SMBHs) play an important role in the co-evolution of themselves, their host galaxies, and the larger scale environments. Such outflows are often characterized by emission and absorption lines in various bands and in a wide velocity range blueshifted from the systematic redshift of the host quasar. In this paper, we report a strong broad line region (BLR) outflow from the z ≈ 4.7 quasar BR 1202-0725 based on the high-resolution optical spectrum taken with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph installed on the 6.5 m Magellan/Clay telescope, obtained from the ‘Probing the He ii re-Ionization ERa via Absorbing C iv Historical Yield’ (HIERACHY) project. This rest-frame ultraviolet (UV) spectrum is characterized by a few significantly blueshifted broad emission lines from high ions; the most significant one is the C iv line at a velocity of $$\sim -6500$$ km s−1 relative to the H α emission line, which is among the highest velocity BLR outflows in observed quasars at z > 4. The measured properties of UV emission lines from different ions, except for O i and Ly α, also follow a clear trend that higher ions tend to be broader and outflow at higher average velocities. There are multiple C iv and Si iv absorbing components identified on the blue wings of the corresponding emission lines, which may be produced by either the outflow or the intervening absorbers.more » « less