skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Graphical Gaussian process models for highly multivariate spatial data
Summary For multivariate spatial Gaussian process models, customary specifications of cross-covariance functions do not exploit relational inter-variable graphs to ensure process-level conditional independence between the variables. This is undesirable, especially in highly multivariate settings, where popular cross-covariance functions, such as multivariate Matérn functions, suffer from a curse of dimensionality as the numbers of parameters and floating-point operations scale up in quadratic and cubic order, respectively, with the number of variables. We propose a class of multivariate graphical Gaussian processes using a general construction called stitching that crafts cross-covariance functions from graphs and ensures process-level conditional independence between variables. For the Matérn family of functions, stitching yields a multivariate Gaussian process whose univariate components are Matérn Gaussian processes, and which conforms to process-level conditional independence as specified by the graphical model. For highly multivariate settings and decomposable graphical models, stitching offers massive computational gains and parameter dimension reduction. We demonstrate the utility of the graphical Matérn Gaussian process to jointly model highly multivariate spatial data using simulation examples and an application to air-pollution modelling.  more » « less
Award ID(s):
1915803
PAR ID:
10334291
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Biometrika
ISSN:
0006-3444
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The manuscript considers multivariate functional data analysis with a known graphical model among the functional variables representing their conditional relationships (e.g., brain region-level fMRI data with a prespecified connectivity graph among brain regions). Functional Gaussian graphical models (GGM) used for analyzing multivariate functional data customarily estimate an unknown graphical model, and cannot preserve knowledge of a given graph. We propose a method for multivariate functional analysis that exactly conforms to a given inter-variable graph. We first show the equivalence between partially separable functional GGM and graphical Gaussian processes (GP), proposed recently for constructing optimal multivariate covariance functions that retain a given graphical model. The theoretical connection helps to design a new algorithm that leverages Dempster’s covariance selection for obtaining the maximum likelihood estimate of the covariance function for multivariate functional data under graphical constraints. We also show that the finite term truncation of functional GGM basis expansion used in practice is equivalent to a low-rank graphical GP, which is known to oversmooth marginal distributions. To remedy this, we extend our algorithm to better preserve marginal distributions while respecting the graph and retaining computational scalability. The benefits of the proposed algorithms are illustrated using empirical experiments and a neuroimaging application. 
    more » « less
  2. Camps-Valls, G.; Ruiz, F. J.; Valera, I. (Ed.)
    Knowing when a graphical model perfectly encodes the conditional independence structure of a distribution is essential in applications, and this is particularly important when performing inference from data. When the model is perfect, there is a one-to-one correspondence between conditional independence statements in the distribution and separation statements in the graph. Previous work has shown that almost all models based on linear directed acyclic graphs as well as Gaussian chain graphs are perfect, the latter of which subsumes Gaussian graphical models (i.e., the undirected Gaussian models) as a special case. In this paper, we directly approach the problem of perfectness for the Gaussian graphical models, and provide a new proof, via a more transparent parametrization, that almost all such models are perfect. Our approach is based on, and substantially extends, a construction of Lněnička and Matúš showing the existence of a perfect Gaussian distribution for any graph. The analysis involves constructing a probability measure on the set of normalized covariance matrices Markov with respect to a graph that may be of independent interest. 
    more » « less
  3. Graphical models have witnessed significant growth and usage in spatial data science for modeling data referenced over a massive number of spatial-temporal coordinates. Much of this literature has focused on a single or relatively few spatially dependent outcomes. Recent attention has focused upon addressing modeling and inference for substantially large number of outcomes. While spatial factor models and multivariate basis expansions occupy a prominent place in this domain, this article elucidates a recent approach, graphical Gaussian Processes, that exploits the notion of conditional independence among a very large number of spatial processes to build scalable graphical models for fully model-based Bayesian analysis of multivariate spatial data. 
    more » « less
  4. Graphical models are ubiquitous for summarizing conditional relations in multivariate data. In many applications involving multivariate time series, it is of interest to learn an interaction graph that treats each individual time series as nodes of the graph, with the presence of an edge between two nodes signifying conditional dependence given the others. Typically, the partial covariance is used as a measure of conditional dependence. However, in many applications, the outcomes may not be Gaussian and/or could be a mixture of different outcomes. For such time series using the partial covariance as a measure of conditional dependence may be restrictive. In this article, we propose a broad class of time series models which are specifically designed to succinctly encode process-wide conditional independence in its parameters. For each univariate component in the time series, we model its conditional distribution with a distribution from the exponential family. We develop a notion of process-wide compatibility under which such conditional specifications can be stitched together to form a well-defined strictly stationary multivariate time series. We call this construction a conditionally exponential stationary graphical model (CEStGM). A central quantity underlying CEStGM is a positive kernel which we call the interaction kernel. Spectral properties of such positive kernel operators constitute a core technical foundation of this work. We establish process-wide local and global Markov properties of CEStGM exploiting a Hammersley-Clifford type decomposition of the interaction kernel. Further, we study various probabilistic properties of CEStGM and show that it is geometrically mixing. An approximate Gibbs sampler is also developed to simulate sample paths of CEStGM. 
    more » « less
  5. Consider jointly Gaussian random variables whose conditional independence structure is specified by a graphical model. If we observe realizations of the variables, we can compute the covariance matrix, and it is well known that the support of the inverse covariance matrix corresponds to the edges of the graphical model. Instead, suppose we only have noisy observations. If the noise at each node is independent, we can compute the sum of the covariance matrix and an unknown diagonal. The inverse of this sum is (in general) dense. We ask: can the original independence structure be recovered? We address this question for tree structured graphical models. We prove that this problem is unidentifiable, but show that this unidentifiability is limited to a small class of candidate trees. We further present additional constraints under which the problem is identifiable. Finally, we provide an O(n^3) algorithm to find this equivalence class of trees. 
    more » « less