skip to main content


Title: Sparta: Heat-Budget-Based Scheduling Framework on IoT Edge Systems
Co-location of processing infrastructure and IoT devices at the edge is used to reduce response latency and long-haul network use for IoT applications. As a result, edge clouds for many applications (e.g. agriculture, ecology, and smart city deployments) must operate in remote, unattended, and environmentally harsh settings, introducing new challenges. One key challenge is heat exposure, which can degrade the performance, reliability, and longevity of electronics. For edge clouds, these problems are exacerbated because they increasingly perform complex workloads, such as machine learning, to affect data-driven actuation and control of devices and systems in the environment. The goal of our work is to protect edge clouds from overheating. To enable this, we develop a heat-budget-based scheduling system, called Sparta, which leverages dynamic voltage and frequency scaling (DVFS) to adaptively control CPU temperature. Sparta takes machine learning applications, datasets, and a temperature threshold as input. It sets the initial frequency of the CPU based on historical data and then dynamically updates it, according to the applications’ execution profile and ambient temperature, to safeguard edge devices. We find that for a suite of machine learning applications and deployment temperatures, Sparta is able to maintain CPU temperature below the threshold 94% of the time while facilitating improvements in execution time by 1.04x − 1.32x over competitive approaches.  more » « less
Award ID(s):
2107101 2027977 1703560
NSF-PAR ID:
10334318
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Edge Computing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Serverless computing is an emerging event-driven programming model that accelerates the development and deployment of scalable web services on cloud computing systems. Though widely integrated with the public cloud, serverless computing use is nascent for edge-based, IoT deployments. In this work, we design and develop STOIC (Serverless TeleOperable HybrId Cloud), an IoT application deployment and offloading system that extends the serverless model in three ways. First, STOIC adopts a dynamic feedback control mechanism to precisely predict latency and dispatch workloads uniformly across edge and cloud systems using a distributed serverless framework. Second, STOIC leverages hardware acceleration (e.g. GPU resources) for serverless function execution when available from the underlying cloud system. Third, STOIC can be configured in multiple ways to overcome deployment variability associated with public cloud use. Finally, we empirically evaluate STOIC using real-world machine learning applications and multi-tier IoT deployments (edge and cloud). We show that STOIC can be used for training image processing workloads (for object recognition) – once thought too resource intensive for edge deployments. We find that STOIC reduces overall execution time (response latency) and achieves placement accuracy that ranges from 92% to 97%. 
    more » « less
  2. Abstract

    Serverless computing is an emerging event‐driven programming model that accelerates the development and deployment of scalable web services on cloud computing systems. Though widely integrated with the public cloud, serverless computing use is nascent for edge‐based, Internet of Things (IoT) deployments. In this work, we present STOIC (serverless teleoperable hybrid cloud), an IoT application deployment and offloading system that extends the serverless model in three ways. First, STOIC adopts a dynamic feedback control mechanism to precisely predict latency and dispatch workloads uniformly across edge and cloud systems using a distributed serverless framework. Second, STOIC leverages hardware acceleration (e.g., GPU resources) for serverless function execution when available from the underlying cloud system. Third, STOIC can be configured in multiple ways to overcome deployment variability associated with public cloud use. We overview the design and implementation of STOIC and empirically evaluate it using real‐world machine learning applications and multitier IoT deployments (edge and cloud). Specifically, we show that STOIC can be used fortrainingimage processing workloads (for object recognition)—once thought too resource‐intensive for edge deployments. We find that STOIC reduces overall execution time (response latency) and achieves placement accuracy that ranges from 92% to 97%.

     
    more » « less
  3. With the proliferation of low-cost sensors and the Internet of Things, the rate of producing data far exceeds the compute and storage capabilities of today’s infrastructure. Much of this data takes the form of time series, and in response, there has been increasing interest in the creation of time series archives in the last decade, along with the development and deployment of novel analysis methods to process the data. The general strategy has been to apply a plurality of similarity search mechanisms to various subsets and subsequences of time series data in order to identify repeated patterns and anomalies; however, the computational demands of these approaches renders them incompatible with today’s power-constrained embedded CPUs. To address this challenge, we present FA-LAMP, an FPGA-accelerated implementation of the Learned Approximate Matrix Profile (LAMP) algorithm, which predicts the correlation between streaming data sampled in real-time and a representative time series dataset used for training. FA-LAMP lends itself as a real-time solution for time series analysis problems such as classification. We present the implementation of FA-LAMP on both edge- and cloud-based prototypes. On the edge devices, FA-LAMP integrates accelerated computation as close as possible to IoT sensors, thereby eliminating the need to transmit and store data in the cloud for posterior analysis. On the cloud-based accelerators, FA-LAMP can execute multiple LAMP models on the same board, allowing simultaneous processing of incoming data from multiple data sources across a network. LAMP employs a Convolutional Neural Network (CNN) for prediction. This work investigates the challenges and limitations of deploying CNNs on FPGAs using the Xilinx Deep Learning Processor Unit (DPU) and the Vitis AI development environment. We expose several technical limitations of the DPU, while providing a mechanism to overcome them by attaching custom IP block accelerators to the architecture. We evaluate FA-LAMP using a low-cost Xilinx Ultra96-V2 FPGA as well as a cloud-based Xilinx Alveo U280 accelerator card and measure their performance against a prototypical LAMP deployment running on a Raspberry Pi 3, an Edge TPU, a GPU, a desktop CPU, and a server-class CPU. In the edge scenario, the Ultra96-V2 FPGA improved performance and energy consumption compared to the Raspberry Pi; in the cloud scenario, the server CPU and GPU outperformed the Alveo U280 accelerator card, while the desktop CPU achieved comparable performance; however, the Alveo card offered an order of magnitude lower energy consumption compared to the other four platforms. Our implementation is publicly available at https://github.com/aminiok1/lamp-alveo. 
    more » « less
  4. As specialized hardware accelerators like FPGAs become a prominent part of the current computing landscape, software applications are increasingly constructed to leverage heterogeneous architectures. Such a trend is already happening in the domain of machine learning and Internet-of-Things (IoT) systems built on edge devices. Yet, debugging and testing methods for heterogeneous applications are currently lacking. These applications may look similar to regular C/C++ code but include hardware synthesis details in terms of preprocessor directives. Therefore, their behavior under heterogeneous architectures may diverge significantly from CPU due to hardware synthesis details. Further, the compilation and hardware simulation cycle takes an enormous amount of time, prohibiting frequent invocations required for fuzz testing. We propose a novel fuzz testing technique, called HeteroFuzz, designed to specifically target heterogeneous applications and to detect platform-dependent divergence. The key essence of HeteroFuzz is that it uses a three-pronged approach to reduce the long latency of repetitively invoking a hardware simulator on a heterogeneous application. First, in addition to monitoring code coverage as a fuzzing guidance mechanism, we analyze synthesis pragmas in kernel code and monitor accelerator-relevant value spectra. Second, we design dynamic probabilistic mutations to increase the chance of hitting divergent behavior under different platforms. Third, we memorize the boundaries of seen kernel inputs and skip HLS simulator invocation if it can expose only redundant divergent behavior. We evaluate HeteroFuzz on seven real-world heterogeneous applications with FPGA kernels. HeteroFuzz is 754X faster in exposing the same set of distinct divergence symptoms than naive fuzzing. Probabilistic mutations contribute to 17.5X speed up than the one without. Selective invocation of HLS simulation contributes to 8.8X speed up than the one without. 
    more » « less
  5. In the paper, we investigate using CPU temperature from small, low cost, single-board computers to predict out- door temperature in IoT-based precision agricultural settings. Temperature is a key metric in these settings that is used to in- form and actuate farm operations such as irrigation schedul- ing, frost damage mitigation, and greenhouse management. Using cheap single-board computers as temperature sensors can drive down the cost of sensing in these applications and make it possible to monitor a large number of micro-climates concurrently. We have developed a system in which devices communicate their CPU measurements to an on-farm edge cloud. The edge cloud uses a combination of calibration, smoothing (noise removal), and linear regression to make pre- dictions of the outdoor temperature at each device. We eval- uate the accuracy of this approach for different temperature sensors, devices, and locations, as well as different training and calibration durations. 
    more » « less