The CTC1-STN1-TEN1 (CST) complex is essential for telomere maintenance and resolution of stalled replication forks genome-wide. Here, we report the 3.0-angstrom cryo–electron microscopy structure of human CST bound to telomeric single-stranded DNA (ssDNA), which assembles as a decameric supercomplex. The atomic model of the 134-kilodalton CTC1 subunit, built almost entirely de novo, reveals the overall architecture of CST and the DNA-binding anchor site. The carboxyl-terminal domain of STN1 interacts with CTC1 at two separate docking sites, allowing allosteric mediation of CST decamer assembly. Furthermore, ssDNA appears to staple two monomers to nucleate decamer assembly. CTC1 has stronger structural similarity to Replication Protein A than the expected similarity to yeast Cdc13. The decameric structure suggests that CST can organize ssDNA analogously to the nucleosome’s organization of double-stranded DNA.
more »
« less
High-Resolution Structure of the Nuclease Domain of the Human Parvovirus B19 Main Replication Protein NS1
ABSTRACT Two new structures of the N-terminal domain of the main replication protein, NS1, of human parvovirus B19 (B19V) are presented here. This domain (NS1-nuc) plays an important role in the “rolling hairpin” replication of the single-stranded B19V DNA genome, recognizing origin of replication sequences in double-stranded DNA, and cleaving (i.e., nicking) single-stranded DNA at a nearby site known as the terminal resolution site (trs). The three-dimensional structure of NS1-nuc is well conserved between the two forms, as well as with a previously solved structure of a sequence variant of the same domain; however, it is shown here at a significantly higher resolution (2.4 Å). Using structures of NS1-nuc homologues bound to single- and double-stranded DNA, models for DNA recognition and nicking by B19V NS1-nuc are presented that predict residues important for DNA cleavage and for sequence-specific recognition at the viral origin of replication. IMPORTANCE The high-resolution structure of the DNA binding and cleavage domain of the main replicative protein, NS1, from the human-pathogenic virus human parvovirus B19 is presented here. Included also are predictions of how the protein recognizes important sequences in the viral DNA which are required for viral replication. These predictions can be used to further investigate the function of this protein, as well as to predict the effects on viral viability due to mutations in the viral protein and viral DNA sequences. Finally, the high-resolution structure facilitates structure-guided drug design efforts to develop antiviral compounds against this important human pathogen.
more »
« less
- Award ID(s):
- 1934291
- PAR ID:
- 10334545
- Editor(s):
- Frappier, Lori
- Date Published:
- Journal Name:
- Journal of Virology
- Volume:
- 96
- Issue:
- 9
- ISSN:
- 0022-538X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Caulobacter crescentus cell cycle-regulated DNA methyltransferase (CcrM) methylates the adenine of hemimethylated GANTC after replication. Here we present the structure of CcrM in complex with double-stranded DNA containing the recognition sequence. CcrM contains an N-terminal methyltransferase domain and a C-terminal nonspecific DNA-binding domain. CcrM is a dimer, with each monomer contacting primarily one DNA strand: the methyltransferase domain of one molecule binds the target strand, recognizes the target sequence, and catalyzes methyl transfer, while the C-terminal domain of the second molecule binds the non-target strand. The DNA contacts at the 5-base pair recognition site results in dramatic DNA distortions including bending, unwinding and base flipping. The two DNA strands are pulled apart, creating a bubble comprising four recognized base pairs. The five bases of the target strand are recognized meticulously by stacking contacts, van der Waals interactions and specific Watson–Crick polar hydrogen bonds to ensure high enzymatic specificity.more » « less
-
Roux, Simon (Ed.)Iterons are short, repeated DNA sequences that are important for the replication of circular single-stranded DNA viruses. No tools that can reliably predict iterons are currently available. The CRUcivirus Iteron SEarch (CRUISE) tool is a computational tool that identifies iteron candidates near stem-loop structures in viral genomes.more » « less
-
Abstract Alternative non‐B form DNA structures, also called secondary structures, can form in certain DNA sequences under conditions that produce single‐stranded DNA, such as during replication, transcription, and repair. Direct links between secondary structure formation, replication fork stalling, and genomic instability have been found for many repeated DNA sequences that cause disease when they expand. Common fragile sites (CFSs) are known to be AT‐rich and break under replication stress, yet the molecular basis for their fragility is still being investigated. Over the past several years, new evidence has linked both the formation of secondary structures and transcription to fork stalling and fragility of CFSs. How these two events may synergize to cause fragility and the role of nuclease cleavage at secondary structures in rare and CFSs are discussed here. We also highlight evidence for a new hypothesis that secondary structures at CFSs not only initiate fragility but also inhibit healing, resulting in their characteristic appearance.more » « less
-
Redβ is a protein from bacteriophage λ that binds to single-stranded DNA (ssDNA) to promote the annealing of complementary strands. Together with λ-exonuclease (λ-exo), Redβ is part of a two-component DNA recombination system involved in multiple aspects of genome maintenance. The proteins have been exploited in powerful methods for bacterial genome engineering in which Redβ can anneal an electroporated oligonucleotide to a complementary target site at the lagging strand of a replication fork. Successful annealing in vivo requires the interaction of Redβ with E. coli single-stranded DNA-binding protein (SSB), which coats the ssDNA at the lagging strand to coordinate access of numerous replication proteins. Previous mutational analysis revealed that the interaction between Redβ and SSB involves the C-terminal domain (CTD) of Redβ and the C-terminal tail of SSB (SSB-Ct), the site for binding of numerous host proteins. Here, we have determined the x-ray crystal structure of Redβ CTD in complex with a peptide corresponding to the last nine residues of SSB (MDFDDDIPF). Formation of the complex is predominantly mediated by hydrophobic interactions between two phenylalanine side chains of SSB (Phe-171 and Phe-177) and an apolar groove on the CTD, combined with electrostatic interactions between the C-terminal carboxylate of SSB and Lys-214 of the CTD. Mutation of any of these residues to alanine significantly disrupts the interaction of full-length Redβ and SSB proteins. Structural knowledge of this interaction will help to expand the utility of Redβ-mediated recombination to a wider range of bacterial hosts for applications in synthetic biology.more » « less
An official website of the United States government

