Formal verification is a promising method for producing reliable software, but the difficulty of manually writing verification proofs severely limits its utility in practice. Recent methods have automated some proof synthesis by guiding a search through the proof space using a theorem prover. Unfortunately, the theorem prover provides only the crudest estimate of progress, resulting in effectively undirected search. To address this problem, we create QEDCartographer, an automated proof-synthesis tool that combines supervised and reinforcement learning to more effectively explore the proof space. QEDCartographer incorporates the proofs' branching structure, enabling reward-free search and overcoming the sparse reward problem inherent to formal verification. We evaluate QEDCartographer using the CoqGym benchmark of 68.5K theorems from 124 open-source Coq projects. QEDCartographer fully automatically proves 21.4% of the test-set theorems. Previous search-based proof-synthesis tools Tok, Tac, ASTactic, Passport, and Proverbot9001, which rely only on supervised learning, prove 9.6%, 9.8%, 10.9%, 12.5%, and 19.8%, respectively. Diva, which combines 62 tools, proves 19.2%. Comparing to the most effective prior tool, Proverbot9001, QEDCartographer produces 26% shorter proofs 27% faster, on average over the theorems both tools prove. Together, QEDCartographer and non-learning-based CoqHammer prove 31.8% of the theorems, while CoqHammer alone proves 26.6%. Our work demonstrates that reinforcement learning is a fruitful research direction for improving proof-synthesis tools' search mechanisms.
more »
« less
Diversity-Driven Automated Formal Verification
Formally verified correctness is one of the most desirable properties of software systems. But despite great progress made via interactive theorem provers, such as Coq, writing proof scripts for verification remains one of the most effort-intensive (and often prohibitively difficult) software development activities. Recent work has created tools that automatically synthesize proofs or proof scripts. For example, CoqHammer can prove 26.6% of theorems completely automatically by reasoning using precomputed facts, while TacTok and ASTactic, which use machine learning to model proof scripts and then perform biased search through the proof-script space, can prove 12.9% and 12.3% of the theorems, respectively. Further, these three tools are highly complementary; together, they can prove 30.4% of the theorems fully automatically. Our key insight is that control over the learning process can produce a diverse set of models, and that, due to the unique nature of proof synthesis (the existence of the theorem prover, an oracle that infallibly judges a proof's correctness), this diversity can significantly improve these tools' proving power. Accordingly, we develop Diva, which uses a diverse set of models with TacTok's and ASTactic's search mechanism to prove 21.7% of the theorems. That is, Diva proves 68% more theorems than TacTok and 77% more than ASTactic. Complementary to CoqHammer, Diva proves 781 theorems (27% added value) that Coq-Hammer does not, and 364 theorems no existing tool has proved automatically. Together with CoqHammer, Diva proves 33.8% of the theorems, the largest fraction to date. We explore nine dimensions for learning diverse models, and identify which dimensions lead to the most useful diversity. Further, we develop an optimization to speed up Diva's execution by 40X. Our study introduces a completely new idea for using diversity in machine learning to improve the power of state-of-the-art proof-script synthesis techniques, and empirically demonstrates that the improvement is significant on a dataset of 68K theorems from 122 open-source software projects.
more »
« less
- Award ID(s):
- 1763423
- PAR ID:
- 10334572
- Date Published:
- Journal Name:
- Proceedings of the 44th International Conference on Software Engineering (ICSE)
- Page Range / eLocation ID:
- 749-761
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Formally verifying system properties is one of the most effective ways of improving system quality, but its high manual effort requirements often render it prohibitively expensive. Tools that automate formal verification by learning from proof corpora to synthesize proofs have just begun to show their promise. These tools are effective because of the richness of the data the proof corpora contain. This richness comes from the stylistic conventions followed by communities of proof developers, together with the powerful logical systems beneath proof assistants. However, this richness remains underexploited, with most work thus far focusing on architecture rather than on how to make the most of the proof data. This article systematically explores how to most effectively exploit one aspect of that proof data: identifiers. We develop the Passport approach, a method for enriching the predictive Coq model used by an existing proof-synthesis tool with three new encoding mechanisms for identifiers: category vocabulary indexing, subword sequence modeling, and path elaboration. We evaluate our approach’s enrichment effect on three existing base tools: ASTactic, Tac, and Tok. In head-to-head comparisons, Passport automatically proves 29% more theorems than the best-performing of these base tools. Combining the three tools enhanced by the Passport approach automatically proves 38% more theorems than combining the three base tools. Finally, together, these base tools and their enhanced versions prove 45% more theorems than the combined base tools. Overall, our findings suggest that modeling identifiers can play a significant role in improving proof synthesis, leading to higher-quality software.more » « less
-
We present MLCERT, a novel system for doing practical mechanized proof of the generalization of learning procedures, bounding expected error in terms of training or test error. MLCERT is mechanized in that we prove generalization bounds inside the theorem prover Coq; thus the bounds are machine checked by Coq’s proof checker. MLCERT is practical in that we extract learning procedures defined in Coq to executable code; thus procedures with proved generalization bounds can be trained and deployed in real systems. MLCERT is well documented and open source; thus we expect it to be usable even by those without Coq expertise. To validate MLCERT, which is compatible with external tools such as TensorFlow, we use it to prove generalization bounds on neural networks trained using TensorFlow on the extended MNIST data set.more » « less
-
Cook, S. ; Katz, B. ; Moore-Russo, D. (Ed.)This paper presents six categories of undergraduate student explanations and justifications regarding the question of whether a converse proof proves a conditional theorem. Two categories of explanation led students to judge that converse proofs cannot so prove, which is the normative interpretation. These judgments depended upon students spontaneously seeking uniform rules of proving across various theorems or assigning a direction to the theorems and proof. The other four categories of explanation led students to affirm that converse proofs prove. We emphasize the rationality of these non-normative explanations to suggest the need for further work to understand how we can help students understand the normative rules of logic.more » « less
-
Interactive proofs of theorems often require auxiliary helper lemmas to prove the desired theorem. Existing approaches for automatically synthesizing helper lemmas fall into two broad categories. Some approaches are goal-directed, producing lemmas specifically to help a user make progress from a given proof state, but they have limited expressiveness in terms of the lemmas that can be produced. Other approaches are highly expressive, able to generate arbitrary lemmas from a given grammar, but they are completely undirected and hence not amenable to interactive usage. In this paper, we develop an approach to lemma synthesis that is both goal-directed and expressive. The key novelty is a technique for reducing lemma synthesis to a data-driven program synthesis problem, whereby examples for synthesis are generated from the current proof state. We also describe a technique to systematically introduce new variables for lemma synthesis, as well as techniques for filtering and ranking candidate lemmas for presentation to the user. We implement these ideas in a tool called lfind, which can be run as a Coq tactic. In an evaluation on four benchmark suites, lfind produces useful lemmas in 68% of the cases where a human prover used a lemma to make progress. In these cases lfind synthesizes a lemma that either enables a fully automated proof of the original goal or that matches the human-provided lemma.more » « less