skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D-Printed Laboratory Equipment for Vibrations and Control Theory Courses: Pendulum, Cantilever Beam, and Rectilinear System
Abstract Learning by doing has proven to have numerous advantages over traditionally taught courses in which the instructor teaches the topic while students remain passive learners with little engagement. Although laboratories give hands-on opportunities for undergraduate mechanical engineering students, they have to wait for a semester for the lab course for instance the prerequisite of the vibrations and control laboratory is the mechanical vibrations course. Since the nature of the dynamics branch consisted of dynamics, vibrations, and control theory courses are highly mathematical, students struggle comprehending the introduced topic and relate the theory to its real-world application area. Furthermore, it’s almost impossible for an instructor to bring the existing educational laboratory equipment to the class since they are bulky and heavy. The advents in manufacturing technology such as additive manufacturing bring us more opportunities to build complex systems new materials. This study presents the design, development, and implementation of low-cost, 3D printed vibratory mechanisms to be utilized in mechanical vibrations, control theory courses along with their associated laboratories. A pendulum, cantilever beam integrated with springs, and a rectilinear system consisted of two sliding carts, translational springs, and a scotch yoke mechanism are designed. The main parts of the mechanisms are 3D printed using polylactic acid (PLA), polyethylene terephthalate glycol (PETG), and thermoplastic polyurethane (TPU).  more » « less
Award ID(s):
2002350
PAR ID:
10334759
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ASME 2021 International Mechanical Engineering Congress and Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Undergraduate mechanical engineering students struggle in comprehending the fundamentals presented in an introductory level mechanical vibrations course which eventually affects their performance in the posterior courses such as control theory. One salient factor to this is missing the visualization of the concept with hands-on learning since the vibrations and control laboratory course is offered in the following semester. This study presents the design, development of three portable and 3D-printed compliant vibratory mechanisms actuated by a linear motor and their implementation in vibrations course and vibrations and control laboratory. The proposed setups consist of flexible and compliant springs, sliders, and base support. Mechanisms are utilized to demonstrate free and forced vibrations, resonation, and design of a passive isolator. In addition to the 3D-printed, portable lab equipment, we created the Matlab Simscape GUI program of each setup so instructors can demonstrate the fundamentals in the classroom, assign homework, project, in-class activity or design laboratory. 
    more » « less
  2. Abstract Limited resources available to the engineering faculty and students impede student learning and deep understanding of the material that is presented in the dynamics and mechanical vibrations courses. Active learning practices such as learning by doing is an effective way to not only build a solid foundation in knowledge but also help students develop engineering skills. However, these courses are mainly taught in a traditional manner and many students struggle in connecting the theory to its real-world application and lose interest. Although mechanical engineering students get more hands-on opportunities in the laboratories, they take vibrations and control laboratories in the following semesters since vibrations is a pre-requisite for these labs. To address this issue, we designed 3 low-cost, compact, and portable laboratory equipment and fabricated them using 3D printing technology. The first equipment is a 3-pendulum system with different lengths and tip loads that can be utilized in the engineering dynamics course. While the second equipment is a 2 DOF compliant vibration isolator consisting of flexible beams, masses, and a linear actuator, the third equipment is a non-linear cantilever beam to be utilized in the vibrations courses and their associated laboratories. 
    more » « less
  3. This paper describes the implementation of innovative 3D-printed laboratory equipment linked to inquiry-based learning activities designed to improve learning, increase engineering identity and motivation, and foster a growth mindset in students taking undergraduate level mechanical vibrations courses, control theory courses, and associated laboratories. These innovative designs create new opportunities for hands-on learning, are low-cost, portable, and can be adapted for use in multiple science and engineering disciplines. The learning activities are based on the POGIL model, which has been used across a variety of disciplines including engineering. We describe the features of three separate devices (spring-connected sliding carts, compliant parallel arms with fixed-free ends and a slider mass, and a pendulum with variable tip load) implemented using a quasi-experimental approach with 510 duplicated students across three semesters during the COVID-19 pandemic in multiple lecture courses and laboratory sections. We also present an assessment of impact based on descriptive statistical analyses of survey data for student-reported learning gains and pre-post paired comparison tests on validated instruments measuring perceptions of engineering identity, engineering motivation, and growth mindset. Further, we conducted a student focus group and include salient instructor observations. Results show most students participating in the learning activities using these devices report that it supported their learning “a lot” or “a great deal.” In addition, on six of seven surveyed learning outcomes, most students reported feeling confident enough to complete them on their own or even teach them to someone else. Our data did not show a measurable impact on engineering identity, engineering motivation, or growth mindset, though it does suggest further investigation is merited. 
    more » « less
  4. The highly mathematical nature of introductory level vibrations and control theory courses results in students struggling to understand the concepts. Hands-on activity demonstrated in class can help them better understand the concepts. However, there is still an ongoing effort to lower the currently substantial cost of educational laboratory equipment for undergraduate-level engineering courses. Also, with the COVID-19 crisis, the Spring 2020 academic year took an unexpected turn for academics and students all over the world. Engineering faculty who teach laboratories had to move online and instruct from home. Online course preparation takes more time and effort compared to traditionally designed face-to-face courses and was compounded considering the unprecedented situation where many instructors didn't have time to record data from existing lab equipment or record video in their laboratories. In this paper, we present a Matlab Simscape GUI program designed to simulate modeling and control of dynamical systems for vibrations and control theory courses, and their associated laboratories, as one potential solution for online instruction. To complement the simulation program, online classroom and homework activities were designed using a learning sciences approach connecting several critical educational theories which can bolster student motivation, engagement with the material, and overall learning performance. The simulation is presented along with data from 19 students who completed the associated classroom and homework activities. Survey results probing student perceptions about the value of the learning tasks for the simulation were overwhelmingly positive and indicate this approach holds promise in supporting student learning. 
    more » « less
  5. Abstract BackgroundActive learning, on average, increases student performance in STEM courses. Yet, there is also large variation in the effectiveness of these implementations. A consistent goal of active learning is moving students towards becoming active constructors of their knowledge. This emphasis means student engagement is of central importance. Thus, variation in student engagement could help explain variation in outcomes from active learning. In this study, we employ Pekrun’s Control–Value Theory to examine the impact of four aspects of course social and cultural environments on student engagement. This theory posits that social and cultural features of the course environment influence students’ appraisals of their ability to control their academic outcomes from the course and the value they see in those outcomes. Control and value in turn influence the emotions students experience in the course and their behaviors. We selected four features of the course environment suggested in the literature to be important in active learning courses: course goal structure, relevance of course content, students’ trust in their instructor, and perceived course competition. ResultsWe surveyed students in 13 introductory STEM courses. We used structural equation modeling to map how features of the course environment related to control, value, and academic emotions, as well as how control, value, and academic emotions influenced engagement. We found engagement was positively related to control and value as well as the emotion of curiosity. Engagement was negatively related to the emotion of boredom. Importantly, features of the course environment influenced these four variables. All features influenced control: goal structure, relevance, and instructor trust increased it, while competition decreased it. All features except competition were related positively to value. Relevance and instructor trust increased curiosity. Goal structure, relevance, and instructor trust all reduced boredom, while competition increased it. ConclusionOverall, our study suggests that the way instructors structure the social and cultural environment in active learning courses can impact engagement. Building positive instructor–student relationships, reducing course competition, emphasizing mastery and the relevance of the course to students can all increase engagement in course activities. 
    more » « less