Abstract The Placerias /Downs’ Quarry complex in eastern Arizona, USA, is the most diverse Upper Triassic vertebrate locality known. We report a new short-faced archosauriform, Syntomiprosopus sucherorum gen. et sp. nov., represented by four incomplete mandibles, that expands that diversity with a morphology unique among Late Triassic archosauriforms. The most distinctive feature of Syntomiprosopus gen. nov. is its anteroposteriorly short, robust mandible with 3–4 anterior, a larger caniniform, and 1–3 “postcanine” alveoli. The size and shape of the alveoli and the preserved tips of replacement teeth preclude assignment to any taxon known only from teeth. Additional autapomorphies of S. sucherorum gen. et sp. nov. include a large fossa associated with the mandibular fenestra, an interdigitating suture of the surangular with the dentary, fine texture ornamenting the medial surface of the splenial, and a surangular ridge that completes a 90° arc. The external surfaces of the mandibles bear shallow, densely packed, irregular, fine pits and narrow, arcuate grooves. This combination of character states allows an archosauriform assignment; however, an associated and similarly sized braincase indicates that Syntomiprosopus n. gen. may represent previously unsampled disparity in early-diverging crocodylomorphs. The Placerias Quarry is Adamanian (Norian, maximum depositional age ~219 Ma), and this specimen appears to be an early example of shortening of the skull, which occurs later in diverse archosaur lineages, including the Late Cretaceous crocodyliform Simosuchus . This is another case where Triassic archosauriforms occupied morphospace converged upon by other archosaurs later in the Mesozoic and further demonstrates that even well-sampled localities can yield new taxa.
more »
« less
Puercosuchus traverorum n. gen. n. sp.: a new malerisaurine azendohsaurid (Archosauromorpha: Allokotosauria) from two monodominant bonebeds in the Chinle Formation (Upper Triassic, Norian) of Arizona
Abstract Non-archosaur archosauromorphs are a paraphyletic group of diapsid reptiles that were important members of global Middle and Late Triassic continental ecosystems. Included in this group are the azendohsaurids, a clade of allokotosaurians (kuehneosaurids and Azendohsauridae + Trilophosauridae) that retain the plesiomorphic archosauromorph postcranial body plan but evolved disparate cranial features that converge on later dinosaurian anatomy, including sauropodomorph-like marginal dentition and ceratopsian-like postorbital horns. Here we describe a new malerisaurine azendohsaurid from two monodominant bonebeds in the Blue Mesa Member, Chinle Formation (Late Triassic, ca. 218–220 Ma); the first occurs at Petrified Forest National Park and preserves a minimum of eight individuals of varying sizes, and the second occurs near St. Johns, Arizona. Puercosuchus traverorum n. gen. n. sp. is a carnivorous malerisaurine that is closely related to Malerisaurus robinsonae from the Maleri Formation of India and to Malerisaurus langstoni from the Dockum Group of western Texas. Dentigerous elements from Puercosuchus traverorum n. gen. n. sp. confirm that some Late Triassic tooth morphotypes thought to represent early dinosaurs cannot be differentiated from, and likely pertain to, Puercosuchus -like malerisaurine taxa. These bonebeds from northern Arizona support the hypothesis that non-archosauriform archosauromorphs were locally diverse near the middle Norian and experienced an extinction event prior to the end-Triassic mass extinction coincidental with the Adamanian-Revueltian boundary recognized at Petrified Forest National Park. The relatively late age of this early-diverging taxon (Norian) suggests that the diversity of azendohsaurids is underrepresented in Middle and Late Triassic fossil records around the world. UUID: http://zoobank.org/e6eeefd2-a0ae-47fc-8604-9f45af8c1147 .
more »
« less
- Award ID(s):
- 1943286
- PAR ID:
- 10426816
- Date Published:
- Journal Name:
- Journal of Paleontology
- Volume:
- 96
- Issue:
- S90
- ISSN:
- 0022-3360
- Page Range / eLocation ID:
- 1 to 39
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Archosauromorph reptiles underwent rapid lineage diversification, increases in morphological and body size disparity, and expansion into new adaptive landscapes. Several of the primary early archosauromorph clades (e.g. rhynchosaurs) are easy to differentiate from others because of their characteristic body types, whereas the more lizard‐like and carnivorous forms with long necks (e.g. tanystropheids) were historically all relegated to the groups Protorosauria or Prolacertiformes. However, it is now clear that these groups are polyphyletic and that a lizard‐like, carnivorous form is plesiomorphic for Archosauromorpha, and multiple subclades started with that body plan. Among these early forms isMalerisaurusfrom the Upper Triassic of India (M. robinsonae) and the Upper Triassic of south‐western USA (M. langstoni). In this paper, we critically re‐evaluate the genus. We find both species ofMalerisaurusas valid, and identifyMalerisaurusas an early diverging, but late‐surviving, carnivorous member of Azendohsauridae within Allokotosauria. Our histological analysis and assessment of ontogenetic changes of limb bones of small and large individuals demonstrate that the skeletons of the small forms grew slowly and became more robust through ontogeny, and that the larger recovered bones are at or near the maximum size of the taxon.MalerisaurusandMalerisaurus‐like taxa were common members of the Otischalkian–Adamanian (late Carnian to mid‐Norian) faunal assemblages from Upper Triassic strata of the south western USA, but they are absent from the younger Revueltian holochronozone. Specimens from western North America show that Allokotosauria had a near‐Pangaean distribution for much of the Middle Triassic to Late Triassic.more » « less
-
Abstract Silesaurids (Archosauria: Dinosauriformes) are found in Middle to Upper Triassic deposits across Pangea, but few stratigraphic sections record the evolution of the group in one geographic area over millions of years. Here, we describe silesaurid remains from the oldest of the Upper Triassic stratigraphic sequence from the base of the Dockum Group, from the type locality of the Otischalkian faunachronozone. Isolated limb bones diagnostic of silesaurids include humeri, femora, and tibiae of a seemingly uniqueSilesaurus‐like taxon from the same locality (Otis Chalk Quarry 3). The femora consist of four specimens of different lengths that sample the variation of character states associated with ontogeny, also sampled previously in both silesaurids (e.g.,Asilisaurus kongweandSilesaurus opolensis) and within neotheropods within Dinosauria (e.g.,Coelophysis bauri). Our observations of the variation in the silesaurid sample further reinforce the interpretation of high variation of morphological features common in dinosauriforms. Furthermore, we show that overpreparation of bone surfaces has hidden some of this variation in previous interpretations. The tibia growth series shows that the fibular crest of the tibia develops during ontogeny, yet another phylogenetically informative character for dinosaurs and their kin that is at least ontogenetically variable in silesaurids. The presence of silesaurids at the base of the Dockum Group (late Carnian or early Norian) conclusively shows that the group was present near the onset of deposition of Upper Triassic rocks and survived for millions of years in the same geographic area at low latitudes throughout the Late Triassic.more » « less
-
Reptile feeding strategies encompass a wide variety of diets and accompanying diversity in methods for subduing prey. One such strategy, the use of venom for prey capture, is found in living reptile clades like helodermatid (beaded) lizards and some groups of snakes, and venom secreting glands are also present in some monitor lizards and iguanians. The fossil record of some of these groups shows strong evidence for venom use, and this feeding strategy also has been hypothesized for a variety of extinct reptiles (e.g., archosauromorphs, anguimorphs, and a sphenodontian). However, evidence of systems for venom delivery in extinct groups and its evolutionary origins has been scarce, especially when based on more than isolated teeth. Here, we describe a potentially venomous new reptile,Microzemiotes sonselaensisgen. et sp. nov., from a partial left dentary recovered from the Sonsela Member of the Chinle Formation (middle Norian, Upper Triassic) of northeastern Arizona, U.S.A. The three dentary teeth have apices that are distally reclined relative to their bases and the tip of the posteriormost tooth curves mesially. The teeth show subthecodont implantation and are interspaced by empty sockets that terminate above the Meckelian canal, which is dorsoventrally expanded posteriorly. Replacement tooth sockets are positioned distolingually to the active teeth as in varanid-like replacement. We identify this new specimen as a diapsid reptile based on its monocuspid teeth that lack carinae and serrations. A more exclusive phylogenetic position within Diapsida is not well supported and remains uncertain. Several features of this new taxon, such as the presence of an intramandibular septum, are shared with some anguimorph squamates; however, these likely evolved independently. The teeth of the new taxon are distinctively marked by external grooves that occur on the entire length of the crown on the labial and lingual sides, as seen in the teeth of living beaded lizards. If these grooves are functionally similar to those of beaded lizards, which use the grooves to deliver venom, this new taxon represents the oldest known reptile where venom-conducting teeth are preserved within a jaw. The teeth of the new species are anatomically distinct from and ~10x smaller than those of the only other known Late Triassic hypothesized venomous reptile,Uatchitodon, supporting venom use across multiple groups of different body size classes. This new species represents the third Late Triassic reptile species to possibly have used envenomation as a feeding (and/or defensive) strategy, adding to the small number of venomous reptiles known from the Mesozoic Era.more » « less
-
Abstract The rapid radiation and dispersal of crown reptiles following the end‐Permian mass extinction characterizes the earliest phase of the Mesozoic. Phylogenetically, this early radiation is difficult to interpret, with polytomies near the crown node, long ghost lineages, and enigmatic origins for crown group clades. Better understanding of poorly known taxa from this time can aid in our understanding of this radiation and Permo‐Triassic ecology. Here, we describe an Early Triassic specimen of the diapsidPalacrodonfrom the Fremouw Formation of Antarctica. WhilePalacrodonis known throughout the Triassic and exhibits a cosmopolitan geographic range, little is known of its evolutionary relationships. We recoverPalacrodonoutside of crown reptiles (Sauria) but more crownward thanYoungina capensisand other late Permian diapsids. Furthermore,Palacrodonpossesses anatomical features that add clarity to the evolution of the stapes within the reptilian lineage, as well as incipient adaptations for arboreality and herbivory during the earliest phases of the Permo–Triassic recovery.more » « less
An official website of the United States government

