Luminescent complexes of heavy metals such as iridium, platinum, and ruthenium play an important role in photocatalysis and energy conversion applications as well as organic light-emitting diodes (OLEDs). Achieving comparable performance from more–earth-abundant copper requires overcoming the weak spin-orbit coupling of the light metal as well as limiting the high reorganization energies typical in copper(I) [Cu(I)] complexes. Here we report that two-coordinate Cu(I) complexes with redox active ligands in coplanar conformation manifest suppressed nonradiative decay, reduced structural reorganization, and sufficient orbital overlap for efficient charge transfer. We achieve photoluminescence efficiencies >99% and microsecond lifetimes, which lead to an efficient blue-emitting OLED. Photophysical analysis and simulations reveal a temperature-dependent interplay between emissive singlet and triplet charge-transfer states and amide-localized triplet states.
Toward rational design of TADF two-coordinate coinage metal complexes: understanding the relationship between natural transition orbital overlap and photophysical properties
A series of twelve two-coordinate coinage metal, Cu, Ag and Au, complexes with carbene-metal-amide structures were prepared. The complexes all display thermal assisted delayed fluorescence (TADF) emission at room temperature from interligand charge transfer (ICT) excited state with short lifetimes (less than 2 μs) and photoluminescent quantum yields that reach near unity. Owing to the involvement of the substituents in the emissive transitions and different metal ion volume, the natural transition orbital (NTO) overlap of the emissive state can be adjusted in a wide range from 0.21 to 0.41. Investigations on the relationship between the NTO overlap of the emissive state and key TADF photophysical properties demonstrated that both singlet–triplet energy gap and radiative decay rate of S 1 state increase along with the NTO overlap exponentially. Consequently, the overall TADF radiative decay rate leads to a maximum when plotted against the NTO overlap, giving the ideal zone from 0.25 to 0.30 for high TADF radiative decay rate in this class of two-coordinate coinage metal complex luminophores.
- Award ID(s):
- 2018740
- Publication Date:
- NSF-PAR ID:
- 10334833
- Journal Name:
- Journal of Materials Chemistry C
- Volume:
- 10
- Issue:
- 12
- Page Range or eLocation-ID:
- 4674 to 4683
- ISSN:
- 2050-7526
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Although unsaturated organotrifluoroborates are common synthons in metal–organic chemistry, their transition metal complexes have received little attention. [CH 2 (3,5-(CH 3 ) 2 Pz) 2 ]Cu(CH 2 CHBF 3 ), (SIPr)Cu(MeCN)(CH 2 CHBF 3 ) and [CH 2 (3,5-(CH 3 ) 2 Pz) 2 ]Ag(CH 2 CHBF 3 ) represent rare, isolable molecules featuring a vinyltrifluoroborate ligand on coinage metals. The X-ray crystal structures show the presence of three-coordinate metal sites in these complexes. The vinyltrifluoroborate group binds asymmetrically to the metal site in [CH 2 (3,5-(CH 3 ) 2 Pz) 2 ]M(CH 2 CHBF 3 ) (M = Cu, Ag) with relatively closer M–C(H) 2 distances. The computed structures of [CH 2 (3,5-(CH 3 ) 2 Pz) 2 ]M(CH 2 CHBF 3 ) and M(CH 2 CHBF 3 ), however, have shorter M–C(H)BF 3 distances than M–C(H) 2 . These molecules feature various inter- or intra-molecular contacts involving fluorine of the BF 3 group, possibly affecting these M–C distances. The binding energies of [CH 2 CHBF 3 ] − to Cu + , Ag + and Au + have been calculated at the wB97XD/def2-TZVP level of theory, in the presence and absence of the supporting ligand CH 2 (3,5-(CHmore »
-
Copper( i ) and silver( i ) pyrazolate complexes {[3,5-(3,5-(CF 3 ) 2 Ph) 2 Pz]Cu} 3 and {[3,5-(3,5-(CF 3 ) 2 Ph) 2 Pz]Ag} 3 have been synthesized using the fluorinated 3,5-(diaryl)pyrazole 3,5-(3,5-(CF 3 ) 2 Ph) 2 PzH and copper( i ) oxide and silver( i ) oxide, respectively. The gold( i ) analog was obtained from a reaction between Au(THT)Cl and [3,5-(3,5-(CF 3 ) 2 Ph) 2 Pz]H/NaH. The X-ray crystal structures show that the coinage metal complexes {[3,5-(3,5-(CF 3 ) 2 Ph) 2 Pz]M} 3 (M = Cu, Ag, Au) are trinuclear in the solid state. They feature distorted nine-membered M 3 N 6 metallacyclic cores. The M–N distances follow Cu < Au < Ag, which is the trend expected from covalent radii of the corresponding coinage metal ions. The 3,5-(3,5-(CF 3 ) 2 Ph) 2 PzH forms hydrogen bonded trimers in the solid state that are further organized by π-stacking between aryl rings. Solid samples of {[3,5-(3,5-(CF 3 ) 2 Ph) 2 Pz]M} 3 display blue photoluminescence. The copper complex {[3,5-(3,5-(CF 3 ) 2 Ph) 2 Pz]Cu} 3 is an excellent catalyst for mediating azide–alkyne cycloaddition chemistry.
-
Biliverdin is a bile pigment that has a very low fluorescence quantum yield in solution, but serves as a chromophore in far-red fluorescent proteins being developed for bio-imaging. In this work, excited-state dynamics of biliverdin dimethyl ether (BVE) in solvents were investigated using femtosecond (fs) and picosecond (ps) time-resolved absorption and fluorescence spectroscopy. This study is the first fs timescale investigation of BVE in solvents, and therefore revealed numerous dynamics that were not resolved in previous, 200 ps time resolution measurements. Viscosity- and isotope-dependent experiments were performed to identify the contributions of isomerization and proton transfer to the excited-state dynamics. In aprotic solvents, a ∼2 ps non-radiative decay accounts for 95% of the excited-state population loss. In addition, a minor ∼30 ps emissive decay pathway is likely associated with an incomplete isomerization process around the C15C16 double bond that results in a flip of the D-ring. In protic solvents, the dynamics are more complex due to hydrogen bond interactions between solute and solvent. In this case, the ∼2 ps decay pathway is a minor channel (15%), whereas ∼70% of the excited-state population decays through an 800 fs emissive pathway. The ∼30 ps timescale associated with isomerization is also observed inmore »
-
A flexible polydentate bis(amidine) ligand LH 2 , LH 2 = {CH 2 NH( t Bu)CN-2-(6-MePy)} 2 , operates as a molecular lock for various coinage metal fragments and forms the dinuclear complexes [LH 2 (MCl) 2 ], M = Cu (1), Au (2), the coordination polymer [{(LH 2 ) 2 (py) 2 (AgCl) 3 }(py) 3 ] n (3), and the dimesityl-digold complex [LH 2 (AuMes) 2 ] (4) by formal insertion of MR fragments (M = Cu, Ag, Au; R = Cl, Mes) into the N–H⋯N hydrogen bonds of LH 2 in yields of 43–95%. Complexes 1, 2, and 4 adopt C 2 -symmetrical structures in the solid state featuring two interconnected 11-membered rings that are locked by two intramolecular N–H⋯R–M hydrogen bonds. QTAIM analyses of the computational geometry-optimized structures 1a, 2a, and 4a reveal 13, 11, and 22 additional bond critical points, respectively, all of which are related to weak intramolecular attractive interactions, predominantly representing dispersion forces, contributing to the conformational stabilization of the C 2 -symmetrical stereoisomers in the solid state. Variable-temperature 1 H NMR spectroscopy in combination with DFT calculations indicate a dynamic conformational interconversion between two C 2 -symmetrical ground state structures in solutionmore »